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The Delta is a Vulnerable Peatland Ecosystem via  
Drainage and Severe Land Subsidence 



Delta Peatland is Subsiding! 
Landscape is Vulnerable to Flooding by Levee Failure; 

Its Collapse would Shut-Down California’s  
Water Conveyance System 



New Plans to Abate or Reverse Subsidence with Carbon Farming: 
Restored Tule Wetlands and Rice on 

Twitchell and Sherman Islands  

What are the: Cost/Benefits?;  Unintended Consequences? 



Published Flux Data

GPP (gC m-2 y-1)
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Wetlands 

Wetlands in California have Great Potential to Assimilate Large Amounts 
of Carbon Due to Long Growing Season, Ample  Sunlight and Water and 

Dense Vegetation that Captures this Sunlight 

Fluxnet Published Database 



How Much Carbon a Landscape Sequesters Depends upon Time Since Disturbance 
 

Question: How Long will it Take for a Restored Wetland to Change from a Carbon Source 
to Carbon Sink? 

Odum, 1969, Science 



NEP (gC m-2 y-1)
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Coefficients:
b[0]	10.74
b[1]	0.068
r ²	0.7318

What Are the Trade-Offs? 
 

Annual Methane Emission Scales with Net Primary Productivity of 
Wetlands,  Natural and Managed 

 
• In Wetlands, Large Carbon Uptake is Associated with Large 

Methane Losses 
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Methane Fluxes Travel by Multiple Routes: 
Need Eddy Covariance Measurements to Assess Fluxes Across a 
Spectrum of Time and Space Scales, without Sampling Artifacts 



http://www.esapubs.org/archive/ecol/E092/095/appendix-A.htm 

http://www.eastmain1.org/files/images/fiches-pedagogiques/mesure-echange.jpg 

Classic Methane Budgets have been Based on 
 Deployment of Chambers: 

 
Episodic, often Manual, Alter Environment, Limited Area 

 



Eddy Covariance Flux Method 

' 'F w c= −

New Generation of Open-Path, Low Power, Laser 
Spectrometers allow us to Measure Methane Fluxes 
Continuously and where Methane is Being Produced, 

in Remote Wetlands 



Detto et al. 2011 AgForMet 

Methane Flux Footprint of a Peatland Pasture 



There Has Been A Revolution  
in Stable, Precise, Accurate and Low Power 

Fast Response Methane Sensors 



Open vs Closed Path Methane Sensor Flux Measurements 

Detto et al. 2011 AgForMet 



Big Ideas/Concepts to Explore 
• What are the Seasonal and Annual Sums of Carbon, 

Water and Methane Fluxes? 
– How do they Vary with Weather/Climate, Plant Traits and 

Depth/Temperature/Chemistry of the Water, Land Use, & 
Management? 

• What are the Links between Photosynthesis and 
Methane Emissions, on short and long time scales? 

• How Do Carbon and Methane Fluxes Change with Time 
since Disturbance? 
– How to Minimize Methane Fluxes and Maximize Carbon 

Uptake with Ecological Restoration of Wetlands? 
– How to Manage Rice to Minimize Methane Emissions? 



Outline 

• Experiences with Open and Closed Path Methane 
Sensor performance 

• Experiences with Eddy Covariance Flux Measurements 
of Methane and CO2 under Natural (tidal wetland), 
Disturbed (pasture, rice and corn), and Reclaimed 
(restored wetlands) conditions 

• Ideas for Upscaling Fluxes with Simple Models and 
Data Inputs 

• Demonstrate the Use of Multiple Flux Towers, Flux 
Footprint Modeling and Remote Sensing to Quantify 
Spatial Variation in Fluxes in a Wetland Mosaic 

 



Six Contrasting Study Sites 

Drained Peatland  
Pasture, BAU 

Seasonally-Flooded, Rice, 
Agricultural Option Newly Restored, Wetland 17+ Year Old,  

Restored Wetland 

Corn, BAU Alfalfa, BAU 



Pilot Study: 
C Flux Measurements on Natural Tidal Wetland 



Delta Field Sites 

DDB Childhood Home 
DDB Birth Place Father’s 

Birth Place 



SCIENCE, RESULTS and DISCUSSION 



Natural Tidal Wetland 

Newly Restored Wetland 



Tidal Wetland Vs Drained Peatland Pasture 

Sherman Island, D 98-168, 2010

Time Hours

0 4 8 12 16 20 24

F co
2 (
µm

ol
 m

-2
 s

-1
)

-10

-8

-6

-4

-2

0

2

4

6

Tidal Wetland: -2.37 gC m-2 d-1

Drained Pasture: -1.30 gC m-2 d-1

Flooding Inhibits Nocturnal Respiration and Daytime Photosynthesis,  
Compared to the Drained Peatland. 



Day 98-124

Hour

0 4 8 12 16 20 24

F C
H

4 (
nm

ol
 m

-2
 s

-1
)

0

20

40

60

80

100

120

140

160

Tidal Wetland, 2010
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Methane from a Tidal vs Non-Tidal and Restored Wetland 



Old Wetland, Pilot Project, USGS 

Newly Restored Wetland Rice 



Mean Diurnal Pattern of CO2 Exchange, Summer 2012 
• Drainage (corn) & 

Disturbance by 
Restoration Promote 
Dark Respiration 
 

• Flooding of Rice and 
the Older Wetland 
Suppresses Dark 
Respiration 
 

• Photosynthesis of C4 
Corn out paces C3 
Photosynthesis of 
Rice and Wetlands 

 
• Ranking of Carbon 

Sequestration 
Potential, peak 
summertime: 
Wetland > Rice > 
Corn 
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• Corn photosynthesis enhances respiration 



Net Carbon Exchange 

• Crops have a Short 
Assimilation period, 
compared to 
perennial wetlands 
 

• Drained pasture 
and crops lose more 
carbon during 
dormant/fallow 
periods than 
wetlands 



Partitioning Net Carbon Fluxes into Photosynthesis and Respiration 



Days 200 to 250, 2012
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• Old Wetland is a 
Huge Methane 
Source 
 

• Convection at 
Night in the Water 
Layer Promotes 
Methane 
Transport 
 

• Methane 
Emissions 
Increase with Age 
and Density of the 
Wetland 



Old Wetland, Favorable Winds
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Delta Wetlands are 
Among the Largest 
Sustained Sources of 
Methane 
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Carbon Sink Strength of Wetland Increases with Time since Restoration 
 

C Fluxes Depend on Percent of Open Water in Fetch 

Newly Restored Wetland
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D287 2012-2013: 45.9 gC m-2 y-1



One Year of Methane Flux Measurements 

Knox, Sturtevant, Koteen, Verfaillie, Hatala, Baldocchi, unpublished 



Rice
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Much Year to Year Variability in Methane Lost by Rice 



NEE GEP ER CH4 GHG budget C Budget 

Site g C m-2 g C m-2 g C m-2 g C m-2 g CO2eq m-2 g CO2eq m-2 g C m-2 

Pasture1 
  

341 
(268, 413) 

-1438 
(-1448, -1428) 

1762 5.84 
(4.34, 7.36) 
to 11.4 
(8.78, 14.1) 

194 
(144, 245) 
to 381 
(293, 469) 

1443 
(1126, 1760) 
to 1630 
(1275, 1984) 

346 
(272, 420) 
to 352 
(277, 427) 

Corn 278 
(254, 301) 

-1356 
(-1365, -1347) 

1619 N/A N/A 1018 
(932, 1104) 

278 
(254-301) 

Rice -49.9 
(-126, 26) 

-1159 
(-1173, -1146) 

1203 5.30 
(4.51, 6.11) 

177 
(150, 204) 

-5.2 
(-310, 298) 

-44.6 
(-121, 31.9) 

Young wetland -368 
(-415, -322) 

-2106 
(-2121, -2090) 

1834 53.0 
(52.2, 53.7) 

1769 
(1743, 1975) 

419 
(222, 614) 

-315 
(-363, -268) 

Old wetland -397 
(-417, -377) 

-1506 
(-1512, -1499) 

1108 38.7 
(37.7, 39.8) 

1293 
(1257, 1329) 

-162 
(-270, -53.0) 

-358 
(-379, -337) 

Knox et al. In preparation 

Greenhouse Gas Budgets, circa 2012 



USGS 
Miller et al 

UCB-eddy 
covariance 

NPP DM growth GPP NPP 

gC m-2 y-1 gDM m-2 gC m-2 y-1 gC m-2 y-1 

361-1091 950-2873 1500-2100 750-1050 

Comparative Carbon Budgets 



Annual Methane Fluxes, Eddy Covariance

FCH4, gC m-2 y-1
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Eddy Covariance is Producing New Data on Annual Methane Fluxes: 
We are Experience Some of the Largest Methane Effluxes 

Delta Wetlands 
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5 Years of Rice Data; Year to Year Differences due to 
Weather, Management (flooding, weeds, herbicides, plowing/discing, planting date) 
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Year to Year Methane Fluxes 
Pulses Follow Draining 



Water is Scarce; Wetlands Pump Large Amounts of Water 

New Wetland suffered from Advection, Evaporation is Decreasing with Time 



UpScaling Carbon Fluxes for Cap and Trade 

Baldocchi and Ryu, unpublished; BESS model (Ryu et al. 2011 Global Biogeochem Cycles 



ESPM 111 Ecosystem Ecology 

Assessing NPP by Light Interception : 
Fundamentals behind Remote Sensing of Plant Production 

• Monteith 1977. Phil Trans Roy Soc, B 

DM a PAR fpar= ⋅ ⋅



ESPM 111 Ecosystem Ecology 

CO2 uptake-Light Response Curve:  
Role of C3 and C4 Crops 

Delta summer 2012/2013, peak LAI

Absorbed PAR (µmol m-2 s-1)
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ESPM 111 Ecosystem Ecology 

Global GPP/NPP Models 
• CASA, Field et al 
• TURC, Ruimy et al 
• Biome-BGC, Modis Running et al 
• LUE-DAMM model, Oikawa 

NPP IPAR fpar f T f≈ ⋅ ⋅ ⋅ ⋅ε θ( ) ( )

IPAR: incident visible light 
fPAR: fraction of absorbed light 
ε: light use efficiency of photosynthesis 



Fall 2010 Summer, 2012 

Winter, 2013 Summer, 2013 

Restored Wetland 



Mayberry Restored Tule Wetland

Year-Day
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Digital Cameras Produce Cheap Long Term Records of Phenology 



Cameras Monitor Management and Phenology of Crops, Rice 2013 

Disced, pre-planting Flooding, seedlings Full canopy, vegetated 

Seed Filling Harvesting Chopped Straw 



Greenness Index over Crop, Wetland and Pasture 

Digital Camera

Day, 2012
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Saenz, Knox, Sturtevant, Koteen, Verfaillie, Baldocchi, unpublished 



Different Patterns of Greenness and Growing Season 



rice

Day, 2012
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Mayberry Slough, Restored Tule Wetland
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GPP fPAR
GPP Farquhar
GPP obs

Oikawa et al, in prep 
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r2=0.86 
Slope=1.04 

r2=0.93 
Slope=1.16 

fPAR model 
GPP=LAI*fPAR*LUE 

-5 0 5 10 15 20 25 30 35 40
-35

-30

-25

-20

-15

-10

-5

0

5

Air Temperature (C)

G
P

P
 (u

m
ol

 m
-2

 s
-1

)

 

 

GPP fPAR
GPP obs

-5 0 5 10 15 20 25 30 35 40
-35

-30

-25

-20

-15

-10

-5

0

Air Temperature (C)

G
P

P
 (u

m
ol

 m
-2

 s
-1

)

 

 

GPP Farquhar
GPP obs

Modeling GPP in mature wetland:   
Adding temperature response improves data-model fit 

Oikawa in prep 
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Reco mod Q10
Reco mod DAMM
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Ecosystem respiration: 
Comparing models 

Q10 
 
Lloyd and Taylor 
 
DAMM 
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y = 0.78*x + 0.87

r2=0.5 
DAMM model 



0 50 100 150 200 250 300
-30

-25

-20

-15

-10

-5

0

5

10

15

N
E

E
 (u

m
ol

 m
-2

 s
-1

)

DOY

West Pond 2013 DOY 1-254

 

 
Mod
Obs
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y = 0.84*x + 0.087

r2=0.91 

Modeling NEE 

Oikawa et al, in prep 
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y = 0.82*x + 9.4

data1
   linear

r2=0.42 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑎𝑎𝑚𝑚 ∗  𝑒𝑒−𝐸𝐸𝑚𝑚𝑥𝑥 𝑅𝑅𝑅𝑅⁄  

𝐶𝐶𝐶𝐶𝐶𝑠𝑠 =
𝑉𝑉max  ∗[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]

𝑘𝑘𝑘𝑘+[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶]
+

𝑉𝑉max  ∗[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]

𝑘𝑘𝑘𝑘+[𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]
+f(WT) 

DAMM CH4 model: 



1.36 Million Acre-feet of evaporation (0.499 m/y) 



Hatala et al. GRL 2012 

Does Photosynthesis Prime Methane Production in Rice? 



Methane scales with Photosynthesis 

Hatala et al. GRL 2012 



Low O2 in Water Promotes High Methane Fluxes 

Daily Averages 
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Newly Restored + Older Wetland + Rice 

Shallow Water (< 10 cm) under Rice is Warmer, More Convective and more Oxygenated,  
Inhibiting Methane Loss compared to non-Tidal, Older Wetland  

with Deeper and Colder Water (~ 35 cm) 
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Wetland Restoration Project, Mayberry Slough 

Optimal Wetland Design + 
Spatial Upscaling Fluxes in Complex Mosaics 



Anchor and Roving Flux Towers 

Restored Wetland, Mayberry Ranch on Sherman Island 

Soccer/Flux Mobile 



Sturtevant, Hatala, Knox, Koteen, Verfaillie, Baldocchi, unpublished 

Fluxes Vary by Wind Direction and Tower Location 
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Perimeter of Vegetation Patches and Veg Fraction Affects  
Variability and Magnitude in Methane Fluxes 

Hatala Mathes et al JGR Biogeoscie, submitted 



Concluding Remarks 

• Methane Emissions at Highly Productive, 
Restored Wetlands, in California, are Extremely 
High 

• Methane Emissions from Restored Wetlands 
Increase with Time 

• Spatial Scaling Depends on Vegetation Fraction 
and Size of Patches 
– Accurate Flux Footprint Models are Key towards 

Interpreting Methane Fluxes 
• N2O budgets are needed for Agricultural crops for 

full GHG accounting 
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