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General Comments 

Good Overview of Many of the Key Scientific Issues 

Overall, the draft report does a good job explaining why evaluating the effects of flow on fishes 
is so difficult.  It correctly identifies many of the complex interacting factors/drivers, the heavy 
degree of alterations of the landscape, and some of the limitations in previous approaches.  The 
report also is correct that there have been major changes in the fish community as a result of 
invasive species.  We support the conclusion that there is need to support timely synthesis of 
research, enhance national and international scientific connections, and to develop more 
sustainable scientific funding and coordination. 

Insufficient Acknowledgement of Scientific Progress on Flow Effects 

We agree that it is difficult to make “reliable predictions of how water management affects 
fishes “(Page 7, Box), but over the last 20 years science has been and continues to progress in 
this area.  The report does cite a few of the key studies, although there isn’t any explanation of 
their context.  Examples of the types of the major progress that should be acknowledged 
include: 

• Flow (and the position of the salt field) have effects on the distribution of fishes and 
other organisms (Kimmerer 2002; Dege and Brown 2004; Feyrer et al. 2007; Kimmerer 
et al. 2009, Feyrer et al. 2010, Sommer and Mejia 2013).  

• Multivariate datasets provide insight into the relative role of different factors affecting 
fishes (MacNally et al. 2010; Thompson et al. 2011). 

•  Detailed information has been developed about the habitat needs of key species such 
as Delta Smelt (e.g. Sommer and Mejia 2013; MAST 2015). 

• Progress on the understanding of the effects of flow on benthic assemblages and 
grazing (Peterson and Vayssières 2010; Lucas and Thompson 2012). 

• Sophisticated new flow and life cycle models provide insight into how flow effects fish 
habitat (Kimmerer et al. 2009; Rose et al. 2013a,b). 



• For some species such as Splittail, the mechanisms responsible for flow effects are 
relatively well-understood (e.g. Sommer et al. 1997; 2002; 2005; 2008; Feyrer et al. 
2006; Moyle et al. 2004). 

• The research program has moved beyond just species abundance towards other metrics 
such as vital rates (e.g. Sommer et al. 2001; Jeffres et al. 2008; Limm and Marchetti 
2009; Perry et al. 2010). 

• Climate change has been a major recent focus of flow studies (Feyrer et al. 2010; Cloern 
et al. 2011). 

• The application of new research tools such as telemetry has provided new insight into 
flow effects (Perry et al. 2010; Michel et al. 2012). 

The Conceptual Framework of the Report Could be Improved 

The draft report included a conceptual model to help explain some of the panel’s thoughts 
about flow effects, although there needs to be more supporting text to provide details.  More 
background is needed on other efforts to provide a conceptual basis for the effects of flow.  For 
example: 

• Kimmerer (2002a; 2004):  Overview of many of the potential mechanisms by which flow 
could affect aquatic organisms. 

• Kimmerer (2002b):  Rigorous evaluation of biotic vs physical (flow) effects. 
• FLaSH conceptual model and analysis of fall flow effects (Brown et al. 2014). 
• MAST (2015) report describing the mechanisms and support for different drivers of 

Delta Smelt abundance and vital rates.  Note that flow (hydrology) is one of the key 
drivers in the model.  Also, the model is already being used to address multiple 
management questions such as:  1) why did Delta Smelt abundance improve so much in 
2011?; 2) the ecological effects of the recent drought; and 3) the design of new tidal 
wetlands monitoring program.   

Consider Adding More Biological Needs? 

The draft report provides good suggestions on how flow studies could be better integrated, and 
the need for more sophisticated hydrodynamic modeling.  The need for more work on vital 
rates was discussed and was appropriate to include.  However, the report did not mention the 
need for better information about fish behavior and habitat preferences.  This is needed to 
“drive” models which integrate fish behavior/habitat use with hydrodynamic and hydraulic 
models.  We believe that this is a major research gap that deserves mention, although we 
acknowledge that this sort of data can be very difficult to collect. 

 



Specific Comments 

• Page 2. The draft report concludes, “the state of science on fishes and flows in the Delta 
is inadequate to make reliable predictions of how water management affects different 
species of fishes because the underlying processes that connect changes in habitat 
conditions to fishes are inadequately understood” and then  recommends “improved 
understanding of the relationships between flows and fishes” is needed.  

o  More and better science to inform management actions is always desirable; 
however, the report does not adequately consider or acknowledge what is 
known based upon existing hydrodynamic models, hydrodynamic data, basic fish 
ecology, and Delta-specific fish studies.  The implicit assumption from the 
authors is that where flow-fish relationships have not been revealed, it can be 
only because underlying processes and tools are inadequate.   A hypothesis that 
flow-fish relationships for at least some species, life stages and locations may be 
weak drivers on fish vital rates should also be considered.   

o Models and data demonstrate that vast portions of the Delta are predominantly 
tidal.  Altered river inflows or altered exports exert little or no influence on these 
tidal hydrodynamic conditions relevant to some or many fishes.   Areas with 
suitable turbidity, depth, predator cover, and food are critically limiting in much 
of the Delta.  However, river inflows and exports, within operational boundaries 
do not necessarily affect the availability of these habitat characteristics. 

o Regarding the utility of existing flow-fish data, several recent and ongoing efforts 
demonstrate the underutilized value of existing (1D) hydrodynamic data.  For 
example:   
 Perry et al. (2015) showed that routing of juvenile Chinook salmon at 

Georgiana Slough (Sacramento River) could be predicted by discharge 
(m3/sec) and flow direction. 

 Cavallo et al. (2015) showed that juvenile Chinook salmon routing at a 
variety of Delta junctions could be predicted by the proportion of 
discharge estimated from DSM2 Hydro. 

 Several efforts to relate juvenile salmonid movements to DSM2 Hydro 
data (including resulting particle behaviors) are currently underway.  
Discussions and presentations by lead investigators suggest the 
dimensionality and spatial resolution of existing hydrodynamic models 
are not a limiting factor for the efficacy of these models.  Rather, 
velocities in channels of the tidal Delta are sufficient indicators (and low 
relative to strong-swimming juvenile salmonids), and that movement 
rates are poorly predicted by hydrodynamics.  

• Development of 3D fish-flow models is a principal recommendation of the report.  While 
3D fish-flow models could be important for testing site- and mechanistic-specific 
hypotheses, the report does not provide an adequate explanation for why such models 
are globally important and necessary for the Delta.   

o Dalyander and Cerco (2010) is the only literature provided by the authors to 
support this claim.  Chesapeake Bay 3D models were developed to represent 



processes of eutrophication and were applied in Dalyander and Cerco (2010) to 
assess a hypothetical management action enhancing menhaden abundance.   
Thus, this example relates poorly, if it all, to the report authors’ goal of 
understanding how Delta flow management effects fish vital rates.  

o The authors identify and recommend a number of individual based ecological 
models, but such models do not require 3D hydrodynamic data to function and 
be useful.  We support the development and application of individual based 
ecological models and the resolution of physical models that are driven by 
mechanistically plausible hypotheses... 

o .  The report’s recommendation for integrative science focusing on mechanisms 
is a sound “strategic” recommendation, but this would not require 3D models, 
especially if support for using such Models is not compelling.    

• Pages 9 and 16. The report repeats several generalizations about Delta hydrodynamics 
which are imprecise or unhelpful. 

o “…the diversion of water for exports alters hydrodynamics and can transport 
fishes to export facilities” (p. 16).  Where and how do exports alter Delta 
hydrodynamics?  Hydrodynamic data is available to answer these questions, but 
the report authors do not consider such data nor do they suggest that such data 
should be examined to specifically inform these generalized conclusions.  

o “The California State Water Project (SWP) and federal Central Valley Project 
(CVP) pump water from the southern Delta… down to the lowest parts of the 
Mokelumne River, and then up Old and Middle Rivers (which reverses these river 
flows at times)” (p. 9).  This wording overly general, as modeling simulations 
show that while net flows can be upstream, pumping does not negate the effects 
of tides. 

• The reports cites several peer-reviewed papers related to entrainment of fishes but 
excludes Zeug et al. (2014) which specifically explores the hydrodynamic influence on 
entrainment rates of tagged juvenile Chinook salmon.  Overall, the draft report should 
consider more of the breadth of peer-reviewed publications directly related to the 
topics on which it makes strategic recommendations.  
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