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1 Introduction 
In 2024, the California Department of Fish and Wildlife (CDFW) issued an Incidental 
Take Permit (ITP) to the California Department of Water Resources (DWR) for 
operation of the State Water Project. As part of ITP Condition of Approval 
(COA) 7.9.3, DWR agreed to lead an interagency Core Team in the development of 
a modeling approach for calculating an annual juvenile production estimate (JPE) 
for spring-run Chinook salmon (Oncorhynchus tshawytscha) (spring-run) produced 
in the Sacramento River watershed, and then use this approach to calculate a JPE 
annually beginning with the 2026-27 outmigration season (i.e., the 2026 brood 
year that begins outmigration in the fall of 2026 and finishes in the spring of 2027). 
Central to this endeavor is an extensive network of rotary screw traps (RSTs) used 
to monitor outmigration of juvenile Chinook salmon in the Sacramento River and its 
tributaries, although the majority of these RSTs programs existed prior to the JPE 
effort, and some of these sites were never intended to provide estimates of 
outmigrant absolute abundance (CDFW email communication December 15, 2025). 
One of the key challenges of using the RST data for a spring-run JPE is the co-
occurrence of multiple runs of Chinook salmon at most sites, often making the run 
type of outmigrating juveniles difficult to distinguish. This chapter describes the 
development of a probabilistic length-at-date (PLAD) model that can be tailored to 
specific monitoring sites to predict the run assignment of captured Chinook salmon 
based on the length of juvenile salmon, and the date and location of capture. 

California’s Central Valley supports four run types of Chinook salmon: fall-run, late-
fall-run, winter-run, and spring-run (Yoshiyama et al. 1998). Historically, Central 
Valley Chinook salmon stocks were one of the most productive systems for Pacific 
salmon. Spring-run were a dominant component of the mixture of stocks 
(Yoshiyama et al. 1998, Williams 2006), but now spring-run are listed as 
threatened, and winter-run are listed as endangered under the federal Endangered 
Species Act (National Marine Fisheries Service [NMFS] 2005). Each stock is 
managed under different evolutionarily significant units (ESUs), although fall-run 
and late-fall-run are listed within the same ESU. 

Managers in the Central Valley would like to limit anthropogenic impacts to the 
natural-origin component of the ESUs, particularly to the endangered winter-run 
and spring-run, which requires identifying natural-origin Chinook salmon sampled in 
fish monitoring programs. In the 1970s, length-at-date (LAD) criteria were 
developed to serve this need, and continue to be used in monitoring programs 
throughout the Central Valley. Although there have been several modifications to 
the LAD model since its inception (Harvey 2011), the current versions of the model 
are similar to the original formulation in several ways. Namely, the existing LAD 
model has static boundaries that define run assignment via a growth function and 
upper and lower boundaries that represent early and late spawn timing, 
respectively. 
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The LAD model is known to have high misassignment errors (Harvey et al. 2014; 
Brandes 2021). As an alternative to the LAD model, methods of genetic run 
identification have been under continuous development since the 1990s and are 
increasingly applied across the Central Valley, including genetics sampling and 
testing specifically implemented to support run identification for the Spring-run JPE 
Program (Canfield 2025). However, genetics cannot be applied to every salmon 
detected in monitoring programs and there is still a need for an improved method 
for assigning a run type to fish that are not genetically tested. There is also a need 
for more dependable run assignment for monitoring data collected in years prior to 
genetic testing, which constitutes the majority of years of data currently used for 
the spring-run JPE models. 

To fill this need, we developed a probabilistic length-at-date (PLAD) model that 
uses genetic run assignment from the subset of genetically tested salmon to predict 
the run type of salmon that were not genetically tested along with uncertainty in 
that run assignment. The PLAD models reported on here were specifically developed 
to assign run type to juvenile salmon sampled at RSTs operating at multiple sites in 
the Sacramento River and its tributaries. Run assignment for these historical catch 
data was coupled with the BT-SPAS-X model to estimate historical spring-run 
production (refer to Chapters 4 and 5 for application of PLAD with BT-SPAS-X at 
tributary and mainstem RST sites). One way of viewing the original LAD model is as 
a mathematical function: the size, date, and location are inputs, with the LAD 
function returning the run as the output. In these terms, our objective at its most 
basic was to develop a more accurate LAD function. 
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2 Probabilistic Length-at-Date Model 

2.1 Objectives 

The PLAD model was developed to meet several objectives with the goal of 
providing estimates of run assignment and statements of the uncertainty around 
those run assignments. The first was to calculate the probability of run assignment 
given a fish’s size, time, and location of capture rather than a binary assignment. 
The second was to develop PLAD assignment models such that they can vary 
spatially. There may be unique dynamics in portions of the spring-run range and 
the PLAD models should reflect those dynamics. The PLAD model explicitly 
incorporates uncertainty in run assignment via probabilistic modeling. Finally, the 
PLAD model workflow can be updated as new information becomes available 
through an iterative process of prediction and estimation. We begin by describing 
the basic model structure and delve into the topic of probabilistic modeling and 
estimation in later sections. 

2.2 Model Structure 

2.2.1 Finite Mixture Model 

The PLAD model was developed to categorize individuals into mutually exclusive run 
types with a probability of assignment to that run. Given an individual sampled 
from the population, say via an RST at a site s and at time t, the run type of 
individual j (Rs,t,j) is an unknown or latent state. There are i = 1, …, N possible 
components or runs that individual j could belong to, and there are specific 
covariates that are used to predict the run type the of individual j. An individual 
fish’s fork length, its date of capture, and the location of capture are useful in 
assigning the individual to a specific run. This is a type of finite mixture analysis 
and the PLAD model uses this statistical framework to develop the method. We 
suppress the use of the site subscript s in the development of the model for clarity; 
however, the models we developed are site-specific and PLAD model results for all 
currently modeled RST sites in the Sacramento River valley are shown in 
Appendix A. In addition, biweekly spring-run assignment probabilities from 
completed site-specific PLAD models are shown in Chapter 4 Appendix B for 
tributary RST sites and Chapter 5 Appendix B for mainstem sites. 

The finite mixture model begins with describing the process for identifying an 
individual to each of the categories of run type. A categorical random variable (Cat) 
is used to describe the run of individual j captured at time t (Rt,j) using probabilities 
that individual j belongs to each of the i= 1:N categories pt,j,1:N = (pt,j,1,…, pt,j,N). 
The distribution Cat() is used to define the actual outcome of the run assignment 
for individual j (Rt,j), and it is equivalent to a multinomial random variable with a 
single observation (i.e, Multinomial(1, pt,j,1:N)). 
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Equation 1. 

𝑅𝑅𝑡𝑡,𝑗𝑗 ∼ Cat(𝑝𝑝𝑡𝑡,𝑗𝑗,1:𝑁𝑁) 

We can incorporate individual-level covariates to help improve the prediction of run 
type assignment. Here we use the fork length (FL in the equation) for individual j, 
and information on the capture at time t to model the change in the probabilities for 
each run type over time t. The probabilities, pt,j,1:N of run type are calculated as the 
probability of the observed fork length for individual j given the distribution of fork 
lengths for each run type. 

At any given time t, there is a mixture of fork length distributions, with the 
components of the mixture arising from the lengths of each run type of juvenile 
Chinook salmon. Thus, the population of fork lengths may be described as a finite 
mixture distribution, in which multiple components combine to form an overall 

distribution. The probabilistic description of the fork lengths 𝑓𝑓(𝐹𝐹𝐹𝐹𝑡𝑡,1:𝑁𝑁)for juveniles at 

a specific sampling time t is shown in Equation 2. 

Equation 2. 

 

Where: 

𝑓𝑓(𝐹𝐹𝐹𝐹
~

𝑡𝑡,1:𝑁𝑁) is the fork length distribution given the parameters θi,t, and 

πi,t is the proportion (or weights) of the mixture distribution for run type i at time 
t. 

The specific probability distribution for fork lengths f() used in the PLAD is the 
lognormal distribution. 

Equation 3. 

𝐹𝐹𝐿𝐿𝑡𝑡,𝑖𝑖 ∼ lognormal(𝜇𝜇𝑡𝑡,𝑖𝑖 ,𝜎𝜎𝑡𝑡,𝑖𝑖
2 ) 

Where: 

µi,t is the log mean of the lognormal distribution, and 

σ2
i,t is the log variance. 

A hypothetical example of the finite mixture model with three run types is provided 
in Figure 2-1. 
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We have described the PLAD model in terms of its mathematical equations, but to 
gain some insight into how the model functions under different combinations of run 
proportions (π), we provide several mixture distributions with different values the 
mixture proportions πi,s,t for a single site and a single time (Figure 2). 

If there was a direct correspondence between run and fork lengths such that each 
run was defined uniquely by a specific fork length or range of fork lengths, then the 
assignment of fork lengths to run type would be straightforward. Namely, the 
individual fork length would fit into mutually exclusive categories of fork lengths for 
each run. Under this scenario, the values of pj,1:N would consist of a vector in which 
a single element was 1 and all others were 0. Importantly, this was one of the 
assumptions underlying the original LAD models. While this assumption allowed the 
run assignment to be calculated easily, it also created misclassifications if the 
boundaries did not truly define mutually exclusive categories. 

2.2.2 Modeling the Parameters of the Fork Length 
Distribution 

As defined to up to this point, the PLAD model requires a value for the mean and 
variance of the fork lengths (µt,i and σt,i, respectively) and the component 
proportions (π,t,i) of each run type i, at each time t. To reduce the number of 
parameters in the PLAD model, we develop models for the following underlying 
components: 1) the change in the mean fork length over time at a site and 2) the 
change in the run proportion (πt,i) over time at a site. We use models with a few 
coefficients and use time as a covariate to reduce the number of parameters 
required in the PLAD model. Also, we model the mean fork lengths and proportions 
of each run type with functional forms that have biological interpretations. Both of 
these aspects will be important when we estimate the parameters of the PLAD 
model by fitting to data. 

We model the mean fork lengths over time by using a log-linear growth model. This 
functional form has historical relevance as this was the form under the original LAD 
work (Harvey et al. 2014). The parameters of the log-linear model also have 
relatively straightforward biological interpretations. 

Equation 4. 

log(𝜇𝜇𝑖𝑖,𝑡𝑡) = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑡𝑡 

Where: 

αi is the intercept which is related to the emergence timing, and 

βi is the growth rate per unit time (days) t for run i. 
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Simpler models can be constructed by collapsing this parameterization. For 
example, if the growth rates of all runs of juveniles at a site are the same, then 
βI = β. 

While the log-linear growth model has been used previously for modeling juvenile 
Chinook salmon growth in the Central Valley (Harvey et al. 2014), the PLAD 
framework can use other growth models as well. For example, growth functions 
that reflect a change in growth rate with size, such as the sigmoidal function or von 
Bertalanffy could also be used to model the change in mean fork lengths over time 
to reflect such patterns in fish growth. Although we begin by using the log-linear 
growth function due its simplicity, our modeling framework allows for other forms of 
growth equations may be evaluated and substituted in the future. 

The variance of the lognormal distributed fork lengths can also be modeled as a 
function of site, run type, or time. In the initial implementation of the PLAD model, 
we simplified the model structure by collapsing the variance terms to be equivalent 
across site, time, and run type. For example, if the modeled variation in growth 
rates are assumed to be the same across all time periods and across all runs at a 
site then σ2i,t = σ2, this parameterization assumes that the variance in fork lengths 
across run types is similar at a given site. 

2.2.3 Modeling the Proportion of Each Component 

The proportions of each run type (πt,i) can vary through the season due to several 
biological processes including the total production of each run type, the survival of 
the juveniles from the location of spawning to the rotary screw trap site, and the 
timing of outmigration. In a two-component site (e.g., spring-run and fall-run) the 
pattern in outmigration is typically dominated by a single run type in the early part 
of the season and then dominated by the second run type in the later part of the 
season. In a three-component site (e.g., winter-run, spring-run, and fall-run), the 
intermediate run type has a unimodal shape in its proportion when that run type is 
outmigrating. As a result, the structure of the models for the proportions should be 
capable of reflecting the unimodal shape expected for sites that have three-
components in the juvenile Chinook salmon samples (e.g., Figure 3). 

The run proportions of the PLAD model can be represented with N-1 underlying 
parameters. The proportions sum to 1, that is Σi=1:Ν πt,i = 1, thus, one fewer 
parameters are needed to model the proportions than run types. For example, if 
there are three run types at a site, then two parameters can be used to define the 
proportions πt,1:3. More formally for the dynamics with three runs as show in 
Equation 5. 
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Equation 5. 

𝜋𝜋𝑡𝑡,1 = 𝜌𝜌𝑡𝑡,1 

𝜋𝜋𝑡𝑡,2 = 𝜌𝜌𝑡𝑡,2(1 − 𝜋𝜋𝑡𝑡,1) 

𝜋𝜋𝑡𝑡,3 = 1 − 𝜋𝜋𝑡𝑡,1 − 𝜋𝜋𝑡𝑡,2 

Where: 

πt,i is the proportion at site s for run i = (1,2,3) at time t, and 

ρt,i is the underlying proportion parameter, which is restricted to the range (0,1). 

This structure can be expanded for sites with more than three runs by repeating the 
process on line 2 of Equation 5 in a similar fashion. 

Using similar logic as in the growth modeling, rather than attempting to estimate a 
large set of parameters ρt,i for each run and time, we use models with fewer 
coefficients and time as a covariate. 

The underlying proportion parameters ρt,i can be modeled using logistic regression 
as a polynomial function of time, which can reflect a unimodal relationship as 
shown in Equation 6. 

Equation 6. 

logit(𝜌𝜌𝑡𝑡,𝑖𝑖) = 𝛿𝛿0,𝑖𝑖 + 𝛿𝛿1,𝑖𝑖𝑡𝑡 + 𝛿𝛿2,𝑖𝑖𝑡𝑡2 

Where: 

δ0,i is the intercept, and 

δ1,i and δ2,i reflect the effect of time on the underlying proportion parameter ρt,i t. 

The logit() function is defined as log(x/(1-x) ) and keeps the values of ρi,t in the 
interval (0,1). 

Under the dynamics where there is a site with three runs that outmigrate 
chronologically, the dynamics may be represented as a decline in the first migrating 
run, a unimodal shape for the second migrating run, and an increasing proportion 
over the season for the final run (Figure 3). 

The set of parameters in the PLAD model includes the α, β and σ parameters of the 
log-linear growth functions and the δ parameters that define the proportions of 
each run type. The full set of parameters is θ = (α, β, σ, δ). 
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3 Summary of Genetic and Catch Data 
There are two sources of data that can be used to estimate the parameters of the 
PLAD model. The first is the genetic identification of a subset of individuals captured 
in the RST samples at each site, which provides information on the fork length of 
fish of a known run assignment. These data are useful for modeling the change in 
mean fork lengths for each run over time at that site to estimate the α and β and σ 
parameters of the log-linear growth functions for each site and run type. There is 
also information in the proportions of each run in the genetic samples that can be 
used to inform the ρ parameters of the PLAD model. The second is the shape of the 
catch distribution from the RST over a finite time interval (e.g., week), which may 
also provide information on the relative proportions of each run (i.e., the ρ 
parameters) in the overall composition. 

3.1 Genetic Data 

Samples for genetic analysis were collected from captured juvenile Chinook salmon 
for JPE years 2022–2024. Two types of samples were collected: mucus swabs 
(2022–2023) and fin clips from the upper caudal lobe (2022–2024). To collect 
mucus for genetic analysis, fish were swabbed 2–15 times along the lateral body 
surface. The cotton swabs were then dipped and swirled into a 1.5-milliliter (mL) 
microcentrifuge tube containing either phosphate-buffered saline (2022–2023) or 
low-EDTA Tris-HCl (2023), and the swab was discarded. Mucus DNA samples were 
either used directly in SHERLOCK genotyping reactions (2022–2023) or were 
subjected to a rapid DNA extraction (2023) prior to SHERLOCK genotyping. DNA 
was extracted from fin clips using either a commercial kit (Qiagen DNeasy 96 Blood 
and Tissue Kit) or a rapid Proteinase K digestion followed by a 95-degree Celsius 
(°C) heat-kill (2024). 

Subsets of mucus DNA samples (2022–2023) and fin-clip extracted DNA samples 
(2024) were subjected to SHERLOCK genotyping assays described in Baerwald et 
al. (2023). First, individuals were genotyped at a portion of the Greb1L locus on 
chromosome 28 to determine whether they are early-migrating (spring or winter 
adult return migration timing) or late-migrating (fall or late-fall adult return 
migration timing) (Prince et al. 2017; Thompson et al. 2020). Salmon with early-
migrating genotypes were subjected to subsequent SHERLOCK assays to 
differentiate spring-run and winter-run individuals. 

Genotyping-in-thousands by sequencing (GT-seq; Campbell et al. 2015) was 
performed on fin-clip extracted DNA from all sampled individuals (2022–2024). 
Individuals were genotyped for 208 genetic markers designed to distinguish run 
types in the Central Valley (Anderson et al. 2025). This marker panel includes 
seven Greb1L-linked markers and 201 other markers distributed across the Chinook 
salmon genome. Early- versus late-migration phenotypes were inferred by 
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analyzing the set of seven genetic markers associated with the Greb1L/rock1 locus 
in the program STRUCTURE (Pritchard et al. 2000). Individuals identified as early-
migrating were assigned to either spring- or winter-run populations, and all 
individuals (regardless of early versus late-migration genotype) were assigned to 
one of the four Central Valley populations—fall, late-fall, spring, or winter—using 
the full suite of genetic markers in the R package RUBIAS version 0.3.4 (Moran and 
Anderson 2018). 

Final run type assignments were made with consideration to both SHERLOCK and 
GT-seq genotyping results. Individuals determined to be late-migrating using 
Greb1L/rock1 were assigned to a “fall or late-fall” run-grouped category. 
Individuals determined to be early-migrating were assigned to either spring or 
winter-runs based on subsequent SHERLOCK assays and/or population assignment 
in RUBIAS. Individuals that displayed a heterozygous genotype at Greb1L/rock1 
(i.e., displayed genotypes characteristic of both early- and late-migrating 
populations) were assigned to the run associated with the highest posterior 
probability reported by RUBIAS. Heterozygous Greb1L/rock1 individuals with less 
than an 80% posterior probability of assignment to any of the four runs were 
designated “unknown.” 

There were 5,631 genotyped juvenile Chinook salmon that were assigned to run 
types from collections from the winter of 2022 through spring of 2024 (Table 1). 
Most of the juveniles were assigned to fall- or late-fall and spring-run (Table 1, 
Figure 4). Winter-run were identified in small numbers at the Battle Creek, Tisdale, 
and Delta entry sites. In addition, there were a small proportion of “unknown” fish 
at most sites. We focus on the fish of known genetic assignment for fitting the PLAD 
model, although heterozygous Greb1L/rock1 individuals could be modeled as a 
distinct run described for Equations 5 and 6. 
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4 Estimation 

4.1 Bayesian Estimation 

We use Bayesian methods to estimate the PLAD model parameters. We provide a 
simple introduction to Bayesian estimation here, but it is beyond the scope of this 
chapter to provide a full treatment of these topics. A very good reference is Gelman 
et al. (2013) for an introduction to Bayesian statistical approaches and Kéry and 
Schaub (2011) for an introduction to Bayesian modeling for ecologists. 

Bayesian methods are based in probability. The approach is to fit a probability 
model to data and to summarize the inference by probability distributions on the 
parameters of the model. Bayesian methods use Bayes’ theorem to integrate both 
prior knowledge about the parameters of the model and information in the data 
about the parameters. Bayes theorem is: 

Equation 7. 

𝑃𝑃(𝑎𝑎) ∝ 𝑝𝑝(𝑎𝑎) ∙ 𝐿𝐿(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝑎𝑎) 

The posterior probability of parameter a P(a) is proportional to the prior probability 
of taking a specific value p(a) times the likelihood of the data given the value of a 
L(data|a). Thus, Bayesian statistics requires two sources of information for a 
parameter a: the prior probability distribution and the likelihood. The prior 
summarizes the expected value of parameter a prior to evaluating the data. 
Information for the prior can come from ecological theory or from studies that were 
performed before analyzing the specific data set. In some cases, the prior 
distribution is structured so that it is uninformative, which allows the information in 
the data to “speak for themselves.” The likelihood summarizes the probability of 
observing the data given the value of a. Bayes theorem is applied for many possible 
values of a to develop the posterior distribution for that range of values. 
Importantly, by combining the prior information and the information in the data, 
the posterior contains all the information on parameter a up to, and including, the 
current analysis of the data. 

One important aspect of Bayesian methods is that the posterior information is 
influenced by both the prior and the posterior. The prior has an important role in 
defining the range of values that can be included in the posterior. The adage “not in 
the prior, not in the posterior” can be seen by looking at Bayes’ theorem. When the 
prior probability of p(a) = 0 then the posterior of a P(a) = 0 as well. While both 
contribute to the posterior, the component that has more information will contribute 
more to the posterior. Thus, if there is little prior information on a parameter prior 
to analyzing the data, the likelihood will dominate the prior. If, on the other hand 
there is good information on a parameter prior to analyzing the data and the data 
are weakly informative, the prior will dominate the posterior. We have situations 
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where we employ both conditions in the development of the PLAD model, and we 
will point them out in the workflow for parameter estimation below. 

Bayesian updating refers to a cyclical use of Bayes theorem to update the prior to 
the posterior as new data become available. Because the posterior distribution 
contains the current information, Bayes theorem can be applied iteratively. In 
iteration i the prior of the current iteration equals the posterior from the previous 
iteration, that is pi(a) = Pi-1(a). The likelihood in iteration is calculated by using 
previously unanalyzed L(datai|a). Bayesian updating can be applied to data 
collected over time, for example from annual survey results. 

Finally, once we have a model in which the parameters have been estimated using 
Bayesian methods, we often want to make predictions from the model. The 
advantage to using Bayesian methods, which are based in probability, is that 
predictions from the model are also probability distributions. This is advantageous 
when an ecologist would like to express uncertainty in the predictions from a 
model. In the PLAD model, we have multiple outputs from the models where 
expressing uncertainty in probabilistic terms is an advantage. For example, if we 
collect a juvenile Chinook salmon at a site in which we have estimated the 
parameters of the PLAD model, we can make a prediction on the run assignment for 
that fish along with a probabilistic statement of the certainty of that assignment. 
For example, the probability that the fish is a spring-run is 0.8, but the 95% 
posterior confidence interval is 0.73 to 0.92. 

4.2 Data and Likelihoods 

The source of information for estimating the θ parameters of the PLAD model are 
fork lengths of the genetically identified fish from the RSTs. To utilize the 
information in the data, we must define likelihood functions that allow us to 
compare predictions from the PLAD model to observations. 

Fish that were genetically identified to run type were used to develop the models 
for fork length. The fork lengths of an individual fish j genetically identified to run i 
sampled at time t, FLi,i,t has a lognormal likelihood with mean µs,i,t and variance σ2i,t 
for run type i. 

Equation 8. 

𝐹𝐹𝐿𝐿𝑗𝑗,𝑖𝑖,𝑡𝑡 ∼ lognormal(𝜇𝜇𝑖𝑖,𝑡𝑡 ,𝜎𝜎𝑖𝑖,𝑡𝑡2 ) 

Note that this equation is very similar to Equation 4. Here we are using the fork 
lengths of juveniles with known run assignments to provide information on the 
mean and variance of the size distribution. These observations are similar to the 
samples or “rugs” in Figures 1 and 2 that are associated with each of the run types 
in the mixture distribution. 
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4.3 Priors 

The models were developed in a Bayesian framework to provide estimates of 
uncertainty on the model parameters θ. Under the Bayesian modeling paradigm, 
priors for all model coefficients are required. In general, we used non-informative 
or vague priors to allow the data to provide information on the underlying 
processes. 

There is one parameter in which we provided an informative prior due to 
information being available on it from previous studies. We used a prior on β, the 
parameter that describes the daily growth rate to reflect growth rate estimates 
from LAD models developed for Central Valley juvenile Chinook salmon runs (6.57 x 
10-3 loge(mmFL)/d) (Harvey et al. 2014). 

4.4 Software 

Posterior samples of the model parameters were obtained by using Markov Chain 
Monte Carlo (MCMC) sampling, which is an efficient method for Bayesian estimation 
(Gelman et al. 2013). The model was fit using Just Another Gibbs Sampler (JAGS) 
(Plummer 2003) in the R programming language (R Core Team 2022) using the 
packages RCT (Isidoro 2020) and runjags (Denwood 2016). Each of the models was 
run using three chains with 15,000 iterations each thinned to every 15th iteration 
with a 3,000-iteration burn in and 2,000-iteration adaptive phase. Model 
convergence was checked using the Gelman-Rubin statistic in which values near 1.0 
indicate that the chains are sampling from the same posterior distribution, and thus 
the model has converged. 
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5 Application of the Probabilistic Length-at-
Date Model to Sacramento River Tributaries 

We fit site-specific PLAD models to genetic data from RST sites on spring-run 
producing tributaries of the Sacramento River, and for several sites on the 
mainstem Sacramento River. PLAD model results for all currently modeled RST sites 
are shown in Appendix A. In addition, biweekly spring-run assignment probabilities 
from completed site-specific PLAD models are shown in Chapter 4 Appendix B for 
tributary RST sites and Chapter 5 Appendix B for mainstem sites. However, to 
demonstrate the PLAD model, we used the Battle Creek site as a case study. We 
chose Battle Creek for this purpose because it has a mixture of spring-run and fall-
run types along with a few winter-run in the system. Below we talk through the 
steps to fit the PLAD model in general and for Battle Creek. 

5.1 Definitions and Filtering Data 

The time construction that we used was based on the juvenile outmigration 
schedule. Because historical records show winter-run can start their outmigration in 
late August or early September, time is defined as the number of days starting 
from July 1 of the brood year. Under this convention, the beginning of January is 
approximately day 180 of the outmigration season, and the beginning of March is 
approximately day 245. 

Although yearling juvenile salmon are captured in the RSTs, our current modeling 
focus is on young-of-year juveniles due to limited monitoring data for estimating 
yearling abundance and outmigration; however, we return to how yearling fish may 
be included in the modeling framework in the discussion. To remove yearlings from 
the data sets prior to fitting PLAD models, we first plotted historical catch data to 
visually identify a LAD threshold separating yearlings from young-of-year 
(Figure 5). All spring-run, fall-run or late-fall-run juveniles that were greater than 
the size threshold and captured prior to day 275 were identified as too large and 
were excluded from the data set used to estimate PLAD model coefficients. 

Some fish were identified as unknown due to their genetic assignments being 
heterozygous for the Greb-1L run-timing genotype and their population-based 
assignment based on other genetic markers having indeterminate results (e.g., no 
population assignment with a value greater than 0.8). These samples were also 
excluded from the data set used to estimate the PLAD model coefficients. 
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5.2 Fitting to Genetic Data 

The Battle Creek site collected a few juveniles that were identified as winter-run 
(Figure 4, Table 1), so this site provided an opportunity to evaluate how the PLAD 
parameter estimates respond to a low number of observations for a run. We also 
note that overall the number of samples were at the lower end relative to other 
sites (Table 1). 

In Battle Creek, winter- and spring-run were the first captured in December 
(Day 150) and collections of both runs continued into May (Figure 6). Fall-run 
captures were later in the season beginning in early March (Day 245). The PLAD 
model described the trends in the size distributions of all three runs. The shaded 
region indicated the 95% credible region of parameter values, i.e., the range of 
parameter uncertainty, whereas the dotted lines indicated the range of 
observations with lognormally distributed fork lengths. The spread in the parametric 
uncertainty differed among runs, reflecting the amount of information in the 
genetically identified fish across time at the site. Winter-run had the least 
information, and uncertainty in the size of fish on a specific day was attributable to 
parametric uncertainty. In contrast, spring and fall-run 95% credible intervals for 
parametric uncertainty were substantially smaller (Figure 6). 

The PLAD model fits for Battle Creek indicated that spring-run had an earlier 
emergence (larger α parameter) than fall-run (Table 2), while fall-run had faster 
growth rates (larger log(β) parameter; Table 2). Winter-run had the earliest 
emergence and the slowest growth rates, although the estimates were not well 
informed from the small numbers of winter-run captured on Battle Creek. 

The run proportions (π) of the PLAD model showed variable pattens among the run 
types in Battle Creek (Figure 7). Spring-run had the highest proportions early in the 
outmigration season and declined as the season progressed. Fall-run were not 
present early in the outmigration season and therefore had a low proportion in the 
mixture distribution, which increased toward the season end. Finally winter-run 
were in low proportions throughout the season with a slight increase toward the 
end of the outmigration season (Figure 7). 
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6 Application of the Probabilistic LAD Models 

6.1 Predicting Probability of Run Type 

One application of the PLAD model is to make a prediction of run type given a 
juvenile Chinook salmon’s site of capture, date of capture and fork length. 

The posterior predictive proportion of each run type (π) on a given date was 
predicted from the posterior distributions of the δ parameters. The fork length 
distributions described by the mean (µ) and standard deviation (σ) of the lognormal 
distributions was predicted from the posterior distributions of the growth 
parameters (α, β, σ). 

The probability of a given sized individual FLj from any run at site s and time t in 
the population can be obtained from the mixture distribution (e.g., Equation 8), 
which is the weighted sum of a given fork length arising from the size distributions 
of each of the component distributions. If we define the probability density function 
for the lognormal distribution as Φ𝐿𝐿𝐿𝐿(𝜇𝜇,𝜎𝜎) then the probability of fork length k (FLk) 
is: 

Equation 9. 

 

Where: 

the tilde (e.g., ) indicates that these are posterior predictive distributions of the 
PLAD model parameters. 

Note: in Equations 9–13, we suppressed the subscript s for site in the equation 

for clarity, although the predictions are unique for each site, as in  

To generate the complete size distribution for a given site and time, the probability 
density in Equation 9 is computed across the full range of sizes. 

We may also be interested in the probability of run type assignment for an 
individual k with fork length FLk,t that is captured at time t. The probabilities of each 
run type are computed for the fork length and then normalized to calculate the 
probability of each run type. The probability that individual k with fork length FLk,t, 
given that it is run type i is: 

Equation 10. 
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To calculate the probability that the individual k is run type i, the fork length 
probabilities from each run type are normalized as 

Equation 11. 

Pr(𝑘𝑘 ∈ 𝑖𝑖|𝐹𝐹𝐹𝐹𝑘𝑘) =  
Pr (𝐹𝐹𝐹𝐹𝑘𝑘,𝑖𝑖,𝑡𝑡)

∑ Pr (𝐹𝐹𝐹𝐹𝑘𝑘,𝑖𝑖,𝑡𝑡)𝑁𝑁
𝑖𝑖=1

 

To incorporate uncertainty into the predictions of run type, samples from the 
posterior distributions of the PLAD parameters (θ) are used to repeat the above 
calculations on the order of thousands of times. Estimates of the probability of run 
assignment for an individual with fork length FLk,t captured at time t are generated 
from the repeated outcomes and characterized by median and 95% credible 
intervals on the probability of run type. The prediction of run type for a new 
individual can be calculated in this way. The utility of this approach is that the run 
type can be predicted (with uncertainty) for individuals captured during any point in 
the outmigration season for a given site and day of the outmigration season. 

Predictions of run assignment from the PLAD model on Battle Creek show how the 
growth dynamics and the mixture proportions interact to create unique patterns in 
run assignment across time (Figure 8). Early in the outmigration season on 
October 6, almost all sizes of juvenile Chinook salmon would be classified as winter-
run, with 40-millimeter (mm) fork length fish having a small probability of being 
spring-run (Figure 8, top left). On December 15, the predicted run type varies 
across the size of the individual; juveniles less than approximately 50 mm in fork 
length have a higher probability of being spring-run, whereas individuals with fork 
lengths greater than 50 mm would have a higher probability of being winter-run 
(Figure 8, top right). On February 23, individuals with a fork length of 40 mm would 
be predicted to be a mixture of fall-run and spring-run, whereas individuals with a 
fork length of 60 mm could be any of the three run types with the highest 
probability of being spring-run, and individuals with a fork length greater than 
100 mm would be predicted to be a mixture of spring-run and winter-run (Figure 8, 
bottom left). Finally, toward the end of the outmigration season on May 3, 
individuals with fork lengths less than 80 mm are more likely to be fall-run, with 
the probabilities becoming approximately equal for individuals with fork lengths of 
90 mm; larger individuals are predicted to be mostly spring-run with some chance 
of being winter-run (Figure 8, bottom right). 

The uncertainty in the predictions reflects both the amount of information that was 
available for estimating the parameters of the PLAD model and the likelihood of fish 
of that size being present. For example, in the first two example dates in Figure 8 
(Days 98 and 168), winter-run are predicted to be the most likely run type for 
larger fish with very high certainty, despite small sample sizes in the Battle Creek 
data set. Later in the season, the run assignment becomes much less certain as can 
be seen by the widths of the 95% credible intervals for the second two dates 
(Figure 8, Days 238 and 308). 
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6.2 Out-of-Sample Prediction 

To evaluate the predictive ability of the PLAD model, we used the PLAD model that 
was developed on genetic run identifications from the 2022, 2023, and 2024 
outmigration seasons to predict individuals that were captured during the 2025 
outmigration season, and then compared these predictions to individual genetic run 
assignments from the 2025 season. As an example, we continue to work with the 
PLAD model for Battle Creek and evaluate the predictions for that site. We used the 
individual’s date of capture and fork length at the time of capture and the PLAD 
model structure (e.g., Equations 1–6) to calculate the probability of run 
assignment, working backward from probability of proportion and probability of size 
to the categorical assignment in Equation 1. The model coefficients (θ) in these 
equations were the posterior draws from fitting to the genetic data from the 2022–
2024 outmigration seasons. For each fish, the probability of run type was calculated 
from 3,000 draws from the posterior distribution of the PLAD model parameters (θ). 
As a result, the probability of run type for each run in the mixture distribution was 
calculated 3,000 times for each individual. From the 3,000 run type predictions, 
several point and interval estimates can be calculated for evaluating the predictive 
ability and its uncertainty of the PLAD model. For example, the mean (or median) 
probability across all of the 3,000 run type predictions can be used to assign a run 
type that would summarize the central tendency of the distribution of probabilities 
of run type. In contrast, the prediction intervals (e.g., 95% interval on run-type 
probability) can provide information on the certainty in the run type assignment by 
the PLAD model. 

Using the mean probability of run type, the most likely run can be assigned to each 
individual. A useful way to display the errors in prediction versus genetic 
assignment is a confusion matrix. The assignments that agree are on the diagonal 
and the mis-assignments are on the off diagonals. This display provides information 
both on the correct assignments and on the patterns in mis-assignments, which can 
be helpful for understanding the bias in the classifications. 

In addition, there has been a significant development in metrics to evaluate the 
predictive ability of algorithms for classification. The expansion of machine-learning 
methods for classification has been one of the main drivers of metric development. 
One of the more common metrics for two classes is the receiver operating 
characteristic curve (ROC), in which true positive assignments are plotted against 
false positive assignments (Fawcett 2006). The area under the ROC curve, or area-
under-curve metric indicates the classification ability of the algorithm. A value of 
1.0 is a perfect classifier (i.e., all true positives and no false positives). A model 
with a 50% chance of correct classification will have a metric value of 0.5, which 
represents the minimum classification score. The binary classification was extended 
to a multi-class metric by Hand and Till (2001), and we use it to evaluate the 
predictive ability of the PLAD model for assigning run type to juvenile Chinook. 
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For Battle Creek, 60 of the salmon captured during the 2025 outmigration season 
were genetically tested (Figure 8). The assignments for the three run types were 
accurate for spring-run and fall-run, but winter-run were misassigned (Table 3). 
There were 12 winter-run and they were predominantly assigned to fall-run, leading 
to an M-metric value of 0.77. 

We also calculated a confusion matrix for the Fisher (1992) LAD criteria 
assignment. Under the LAD assignments, almost all genetically tested juvenile 
Chinook salmon captured at Battle Creek during the 2025 outmigration season were 
assigned to fall-run with one genetic winter-run being assigned to spring-run 
(Table 3). As a result, the four genetic fall-run were classified correctly by LAD, but 
the remaining 56 genetically tested salmon were misclassified by LAD. It is worth 
noting that the version of the LAD criteria used by field crews on Battle Creek do 
not have a category for predicting winter-run, so genetic winter-run are guaranteed 
to be misclassified by LAD; however, all but one of the 49 genetic spring-run were 
also misclassified. 

Under the PLAD model, the misclassification of winter-run to fall-run was likely due 
to the higher numbers of winter-run captured during the 2025 outmigration season 
relative to the other years used to fit the PLAD model coefficients. This was because 
of a recently implemented winter-run jump start program on Battle Creek, which 
continues to increase numbers of winter-run produced in Battle Creek. During the 
2025 outmigration season, 12 winter-run and four fall-run were captured in Battle 
Creek, compared to only seven winter-run and 36 fall-run over the previous three 
years combined (Table 1). Estimates of the probability of each run type for the 12 
genetically identified winter-run from 2025 are presented in Table 5. Because of the 
change in winter-run to fall-run ratios in 2025 relative to the previous three years, 
the PLAD model for Battle Creek expected fish in the 70–90 mm fork length range 
to have a higher probability of being fall-run or spring-run than winter-run 
(Figure 7, Figure 8), while the genetic assignments showed the opposite pattern 
(Figure 9). Furthermore, the 95% intervals for the probability of run assignment for 
fall-run and spring-run were broad, demonstrating a general lack of precision in the 
PLAD estimates late in the season (Table 5). 

In contrast, juveniles that were captured early in the season had high precision in 
the run assignment, as demonstrated for Day 98 in Figure 8. The PLAD model 
assigned all individuals during this period to spring-run with a median assignment 
probability of approximately 0.99 (95% intervals of 0.90, 1.0), and genetic tests 
also assigned these individuals to spring-run. This suggests there may be periods in 
the sampling season at any given site when the PLAD models can precisely assign 
juveniles to the correct run-type, and other periods when the PLAD model 
assignments are imprecise and incorrect. The uncertainty interval of PLAD 
predictions can provide insight into when the PLAD model is likely to be less 
precise, and continuing to perform out-of-sample predictions for additional years 
will help identify these periods. 
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Battle Creek presents an interesting case study in the application of the PLAD 
model to out-of-sample prediction. First, Battle Creek is one of the few tributary 
RST sites where winter-run are present, creating a three-component mixture 
model. Second, the proportions of winter-run are changing in Battle Creek because 
of active reintroduction efforts (Lipscomb et al. 2025). For cases like this, we may 
need to put more consideration into which years of genetic data are used to 
estimate PLAD model coefficients. For example, perhaps only the initial years of 
genetic tests should be used to estimate Battle Creek PLAD coefficients when the 
application is to assign run to years prior to genetic testing. Conversely, as the 
reintroduction of winter-run to Battle Creek proceeds, it will be important to 
continue collecting genetic data and to track the relative proportions of winter-run 
to improve PLAD run assignment accuracy for future years. 

6.3 Spring-run Proportion in Historical Catch Data 

One of the primary purposes of the PLAD model is to estimate the proportion of 
spring-run in the historical mixed stock catch prior to the recent advent of genetic 
testing. Estimation of run proportions were needed to estimate run-specific 
abundance from these historical catch records (refer to the BT SPAS-X models 
described in Chapters 4 and 5), which could then be applied in models to predict 
spring-run juvenile production (refer to the stock-recruit model described in 
Chapter 7, and the and inseason outmigrant model described in Chapter 8). The 
approach we employed was to use the fork lengths of individuals captured during 
biweekly periods at each RST site to predict the proportions of each run expected 
during those biweekly periods. We selected biweekly periods as a balance between 
temporal resolution in run-specific abundance estimates while ensuring adequate 
sample sizes to fit model parameters. Given the Bayesian approach in developing 
the PLAD model, the estimates of the spring-run proportion in the historical catch 
allows the incorporation of run assignment uncertainty into biweekly abundance 
estimates. 

Although the posterior predictions from the PLAD model for the proportions of each 
run type (π) would be sufficient for predicting the total abundance of each run for 
biweekly periods, application of survival and travel time models (Chapter 9) 
required predictions of run proportion for specific size categories: fry (less than a 
45-mm fork length) and smolts (greater than a 45-mm fork length), because 
outmigrant size is a covariate in these models. We accomplished this by integrating 
over the size distribution on a given date and site using the upper and lower 
bounds of the life stage categories. Uncertainty in the proportion of spring-run was 
again incorporated into the multi-model framework using draws from the posterior 
distributions of the PLAD model. 

This approach is similar to the approach described above for estimating the 
probability of run type for an individual with a specific fork length, although for this 
application we were interested in a range of fork lengths. To generate the 
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proportion of the run from a specific size range on a given day and location, the 
probability of fork lengths in each size range from the lower size to upper size (l,u) 
and from run type i is calculated by integrating across the size range: 

Equation 12. 

 

Where: 

we are integrating across the lower and upper fork lengths, and 

all other symbols of the equation are the same as in Equation 6-2. 

To calculate the probability that individuals in the size range (l,u) are a specific run 
type, the probability of a fork length from each run type in the size range (l,u) are 
normalized as: 

Equation 13. 

Pr(𝑘𝑘 ∈ 𝑖𝑖|𝐹𝐹𝐹𝐹𝑘𝑘=𝑙𝑙:𝑢𝑢) =  
Pr (𝐹𝐹𝐹𝐹𝑘𝑘=𝑙𝑙:𝑢𝑢,𝑖𝑖,𝑡𝑡)

∑ Pr (𝐹𝐹𝐹𝐹𝑘𝑘=𝑙𝑙:𝑢𝑢,𝑖𝑖,𝑡𝑡)𝑁𝑁
𝑖𝑖=1

 

Again using Battle Creek as the example, predictions of the proportion of spring-run 
juveniles were computed for each Julian week beginning with Julian week 45 and 
ending with Julian week 22. This range of Julian weeks coincide with the historical 
RST catch dates and facilitate using the PLAD model outputs for analyzing the 
historical catch data. Across all fork lengths, spring-run had the highest proportion 
among juveniles captured early in the season and decreasing proportions over the 
outmigration season (Figure 8, top left). Fry-sized fish (i.e., with a fork length less 
than or equal to 45 mm) were predominantly spring-run early in the season 
(Figure 8, top right). This pattern was due to fall-run fry entering the samples 
around Julian week 5. Smolt-sized fish (i.e., with a fork length greater than 45 mm) 
were predominantly spring-run in the middle part of the outmigration season 
(Figure 8, bottom left), which reflected the small size of spring-run in the early 
portion of the season and the addition of fall-run smolt-sized fish later in the 
outmigration season. 

It is important to note that the proportions of spring-run generated in Figure 8 
include the influence of winter-run on the mixture of juvenile Chinook salmon in 
Battle Creek. Winter-run juveniles were first reintroduced into Battle Creek in 2018 
with adult winter-run returning to spawn beginning in 2020. To evaluate the 
historical RST catch data in Battle Creek prior to 2018 (i.e., before winter-run were 
reintroduced), the winter-run component could be removed from the PLAD data set 
such that a pre-reintroduction estimate of spring-run proportion would be 
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estimated. However, given the relatively small number of winter-run in the dataset 
on Battle Creek (7 of 187; Table 1), the overall impact on the predicted spring-run 
proportion for years prior to winter-run reintroduction should be minimal. 
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7 Future Work 

7.1 Expansion of the Modeling Framework with 
Hierarchical Modeling 

Hierarchical modeling is a useful approach for pooling data across related spatial or 
temporal sampling units that allows the information from these units to be shared 
(Gelman et al. 2013). For example, we are analyzing the dynamics underlying the 
growth of juveniles at a site over several years. Thus far, we have implicitly 
assumed that the growth dynamics at a site are the same across each year and 
thus we are operating under the hypothesis that the parameters to define the 
growth of juveniles should be the same values in all years. As a result, any 
consistent variation in juvenile growth rates is reflected in the posterior 
distributions of the (α,β,σ) parameters. An alternative hypothesis is that each year 
is completely different from the other years, and thus the parameters to define the 
growth of juveniles are unique in each year. Under this formulation, information on 
the growth dynamics would be assumed to be independent in each year. 
Hierarchical modeling is intermediate to these two hypotheses about the variation 
in dynamics among years. The advantage is that the hierarchy allows for individual 
years to be unique from each other, but to still come from a similar underlying 
process. 

The approach is to allow the parameters to arise from a hyper-distribution. That is, 
instead of each parameter coming from its own distinct prior distribution, they are 
drawn from a common hyper-distribution with the same mean and variance. For 
example, in the simple Bayes’ theorem example above (Equation 7), let us assume 
that the parameter a is being estimated in three different years y. We define the ay 
as coming from the same hyper-distribution, such as a normal distribution with a 
common mean µa and variance σa2: 

Equation 14. 

𝑎𝑎𝑦𝑦~𝑁𝑁(𝜇𝜇𝑎𝑎 ,𝜎𝜎𝑎𝑎2) 

There are some important issues in the development of a PLAD hierarchical model 
that are worth identifying. The first issue is that the use of a hyper-prior for a 
parameter assumes that the underlying process this parameter describes is the 
same across the different units grouped under the hyper-prior. In our example 
above, we would assume that the years are “exchangeable;” that is, we would 
assume that the underlying dynamics were the same among years. Also, the 
number of units where the data could be combined is an important consideration in 
whether to apply hierarchical modeling. It is generally not worth attempting 
hierarchical modeling with just a couple of exchangeable units. The hyper-variance 
determines the degree of sharing of information among the units. Small numbers of 
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units (i.e., three to four units) may not have much information on the posterior of 
the hyper-variance (σa2). As a result, when the number of exchangeable units is 
small, additional work is required to develop vaguely informative priors on the 
hyper-variance to ensure that information from the units is pooled into the hyper-
distribution (Gelman et al. 2013 in Section 5.7). 

Currently the level of genetic data span four seasons (three of which were analyzed 
here); thus, we are temporally operating in the design space of a few exchangeable 
units until more years of genetic data have accumulated. Still, there is value in 
developing the PLAD models in a hierarchical fashion to understand the degree of 
inter-annual variability and the degree of shared patterns among years. Also, as 
additional years of data are collected, the vaguely informative priors required for 
pooling in the early stages of the analysis can be relaxed to allow the data to define 
the hyper-variance among years. The use of hierarchical modeling can also be used 
to group RST sites spatially. The most likely candidates for site grouping are the 
mainstem sites of Tisdale, Knights Landing, and Delta entry due to the relatively 
short travel times of juvenile Chinook salmon between these sites, which would 
result in relatively similar LAD relationships. The use of spatial units follows a 
similar development to the discussion of hierarchical modeling among years. 

7.2 Modeling Feather River 

Historically, Feather River spring-run accessed high-elevation streams for spawning, 
while fall-run spawned closer to the valley floor. Following construction of Oroville 
Dam, both populations spawn in the several miles of suitable habitat downstream of 
the dam, which led to interbreeding of spring- and fall-run. Hatchery practices also 
result in interbreeding of spring- and fall-run. The interbreeding produces juveniles 
that are heterozygote for run-timing genotypes and can exhibit intermediate 
juvenile outmigration phenotypes. Currently heterozygotes are assigned to fall-run 
or spring-run using a suite of genetic markers that are not directly linked to adult 
run-timing and which may not coincide with their outmigration timing. From the 
PLAD perspective, the decoupling of assignment from outmigration phenotype 
introduces potential bias in the estimation of the PLAD model parameters. Because 
the Feather River is typically one of the most productive tributaries for naturally 
spawned spring-run, the bias could be substantial when PLAD models are applied to 
predict a Sacramento Valley spring-run JPE. 

One of the next steps in PLAD model development is to explicitly model juveniles 
with heterozygote run-timing genotypes as a separate “run.” In addition, forms of 
the PLAD model can incorporate uncertainty in the genetic run assignment, 
particularly for those heterozygote fish that have been identified to run using 
population-based markers. The PLAD model can be updated to allow uncertainty in 
genetic assignment to vary by individual and thus allow fish with high accuracy to 
have a stronger influence on the growth parameters than fish with lower accuracy. 
This approach can be implemented through use of a genetic assignment error 
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matrix, such as those used for aging errors (Punt et al. 2008), or by using 
individual-level genetic typing errors returned from the genetic assignment 
algorithms (e.g., Moran and Anderson 2018). 

To incorporate the release of hatchery juveniles into the Feather River, we can 
include a hatchery component into the PLAD model structure. Marked individuals of 
known hatchery origin can be used to develop a unique growth equation and 
proportion in the population to help identify unmarked hatchery fish. Information on 
the size and timing at release can be used as priors to help inform the parameters 
of PLAD models for hatchery fish. 

7.3 Use of Catch Data 

For the historical catch data that were obtained prior to initiation of genetic 
sampling, there is information in the catch composition from each year that can 
theoretically inform the PLAD model for that site and year. For example, 
discrepancies between the predicted and observed size distribution for a specific 
site and time can be used to update the PLAD prediction for that site and time 
(Figure 11). 

Attempts to estimate the relationship between the size distribution in catches and 
the age structure of the underlying population have been a goal of fisheries 
scientists for some time. Fournier et al. (1990) developed an approach called 
MULTIFAN that uses a von Bertalanffy growth model to predict the mean size of 
fishes of different ages. A distribution of sizes for each age is constructed from a 
probabilistic distribution of sizes given the mean and variance. The catch data at 
each time step is a mixture distribution composed of different age classes with each 
age class having its own proportion in the mixture distribution. The MULTIFAN 
structure is similar in many respects to the PLAD model. The mean size of different 
components are tied to a growth model through time and the distribution of fish 
sizes in the catch is a mixture, with the proportions of the components changing 
through time. The authors of the MULTIFAN framework developed a robust 
likelihood function for estimation and remark that the fitting of size-structured data 
is a difficult and sometimes subjective effort. Nonetheless, they were successful in 
estimating the size structure of southern bluefin tuna (Thunnus maccoyii) using this 
approach. This provides a roadmap for using the historical RST data to understand 
variability in growth rates and proportions of run types in the Central Valley. 
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Tables 
Table 1. Genetic Data Analyzed for Each Site by Genetic Designation 

Site (Abbreviation) Falla Spring Unknown Winter 

Battle Creek (BTC) 36 144 0 7 

Butte Creek (BUT) 3 239 0 0 

Lower Clear Creek (CLR) 419 88 8 0 

Deer Creek (DER) 17 106 1 0 

Delta entry (DEL) 213 36 9 10 

Feather River RM17 (F17) 510 100 6 3 

Feather River RM61 (F61) 1,836 468 38 0 

Knights Landing (KNL) 167 31 1 5 

Mill Creek (MIL) 138 106 2 1 

Tisdale (TIS) 244 49 7 19 

Yuba River (YUR) 441 119 3 1 

aIncludes fall and late fall. 

RM = river mile 

Table 2. Posterior Distributions for Probabilistic Length-at-Date Parameters Fit 
to Juvenile Chinook Salmon Captured in Battle Creek 

Table of posterior distributions for probabilistic length-at-date (PLAD) parameters fit 
to juvenile Chinook salmon captured in Battle Creek. The effective sample size 
(SSeff) indicates the number of independent samples in the Markov Chain Monte 
Carlo (MCMC) (larger is better) and the Gelman-Rubin statistic (psrf) indicates 
whether chains have failed to converge (values greater than 1.1 indicate lack of 
convergence). 

Parameter Lower95 Median Upper95 SSeff psrf 

αS 1.9592 2.1098 2.1098 6468 1.000 

αF -0.04830 0.66962 1.4117 1197 1.000 

αW 3.345 3.9223 4.3949 10530 1.000 

σ 0.18208 0.20239 0.22429 28402 1.000 

log(βS) -4.9794 -4.8896 -4.8065 6487 1.001 

log(βF) -4.6697 -4.4469 -4.2458 1172 1.001 

log(βw) -7.2830 -6.1645 -5.3445 11567 1.000 

δ0,1 0.87205 1.3758 1.8940 30000 1.000 

δ0,2 -0.18276 0.61827 1.4195 30000 1.000 

δ1,1 -1.6997 -1.2269 -0.76434 29904 1.000 

δ1,2 -0.01906 0.74940 1.5644 30000 1.000 
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Parameter Lower95 Median Upper95 SSeff psrf 

δ2,1 -0.39759 0.09008 0.59936 30000 1.000 

δ2,2 -0.49628 0.17593 0.86419 30000 1.000 

S = spring-run, F = fall-run, and W = winter-run 

Table 3. Genetic Run Assignments and Probabilistic Length-at-Date Predictions 

Genetic run assignments and PLAD predictions for 60 juvenile Chinook salmon 
captured in Battle Creek during the 2025 outmigration season. 

   PLAD  

  Fall Spring Winter 

 Fall 4 0 0 

Genetic Assignment Spring 0 44 0 

 Winter 11 1 0 

 

Table 4. Genetic Run Assignments and Run Assignments Based on Fisher at 
Battle Creek in 2025 

Genetic run assignments and run assignments based on Fisher (1992) length-at-
date (LAD) criteria for 60 juvenile Chinook captured in Battle Creek during the 2025 
outmigration season. 

   Field ID from LAD  

  Fall Spring Winter Non-race 

 Fall 4 0 0  

Genetic Assignment Spring 38 0 0 1 

 Winter 11 1 0  

 

Table 5. Individuals Genetically Identified to Winter-run in Battle Creek and 
Probabilistic Length-at-Date Predictions 

Individuals genetically identified to winter-run in Battle Creek during the 2025 
outmigration season and their PLAD predictions for probability of each run-type 
median (0.5) and 95% credible intervals (0.025, 0.975) for spring-run, fall-run, and 
winter-run. 

ID Spring 
0.5 

Spring 
0.025 

Spring 
0.975 

Fall 
0.5 

Fall 
0.025 

Fall 
0.975 

Winter 
0.5 

Winter 
0.025 

Winter 
0.975 

1 0.45 0.17 0.77 0.5 0.2 0.78 0.03 0 0.2 

2 0.45 0.17 0.77 0.5 0.2 0.78 0.03 0 0.2 

3 0.41 0.15 0.74 0.55 0.23 0.81 0.02 0 0.17 

4 0.41 0.15 0.74 0.55 0.23 0.81 0.02 0 0.17 



DRAFT | Peer Review Purposes Only | Not for Citation 

DRAFT | Peer Review Purposes Only | Not for Citation 
December 2025  Tables-3 

ID Spring 
0.5 

Spring 
0.025 

Spring 
0.975 

Fall 
0.5 

Fall 
0.025 

Fall 
0.975 

Winter 
0.5 

Winter 
0.025 

Winter 
0.975 

5 0.61 0.23 0.89 0.21 0.05 0.53 0.13 0.01 0.56 

6 0.37 0.13 0.71 0.58 0.26 0.83 0.03 0 0.18 

7 0.28 0.09 0.61 0.69 0.36 0.89 0.02 0 0.13 

8 0.4 0.15 0.74 0.53 0.22 0.8 0.04 0 0.23 

9 0.45 0.17 0.78 0.47 0.18 0.76 0.05 0.01 0.28 

10 0.4 0.15 0.74 0.53 0.22 0.8 0.04 0 0.23 

11 0.44 0.16 0.77 0.48 0.19 0.77 0.05 0.01 0.27 

12 0.34 0.12 0.67 0.62 0.3 0.85 0.02 0 0.17 
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Figures 
Figure 1. Hypothetical Finite Mixture Distribution Over Finite Time Interval 

A hypothetical finite mixture distribution composed of three run types over a finite 
time interval (e.g., week). The distribution of fork lengths (in millimeters [mm]) for 
each component is plotted as a curve and samples from each of the distributions 
are shown as vertical slashes on the x-axis. The composite distribution is shown in 
gray. 
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Figure 2. Hypothetical Finite Mixture Distributions with Variable Component 
Proportions 

Hypothetical finite mixture distributions composed of three run types over a finite 
time interval (e.g., week) with variable component proportions. Equal proportions 
(top left), fall-run dominated (top right), spring-run dominated (bottom left) and 
winter-run dominated (bottom right). The distribution of fork lengths (in mm) for 
each run type is plotted as a curve and samples from each of the distributions are 
shown as vertical slashes on the x-axis. The composite distribution is shown in 
gray. 
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Figure 3. Hypothetical Variation in Proportions of the Three Generic Run Types 

Hypothetical variation in the proportions (π) of each of three generic run types over 
time at a site. The values of π were generated by using Equations 6 and 7 with 
known values of δ0,1:2 δ1,1:2 and δ2,1:2. 
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Figure 4. Genetic Samples Categorized by Run Type for Each Site 

Genetic samples categorized by run type for each site. Site names are included in 
Table 1. Days are days since July 1, which was the date used to distinguish 
between brood years. Samples from multiple sample years are combined for each 
site. 
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Figure 5. Runs of Juvenile Chinook Captures in Rotary Screw Traps and 
Identified to Run Type 

Winter-run (blue), spring-run (black) and fall-run or late fall-run (red) juvenile 
Chinook salmon captured in rotary screw traps (RSTs) and genetically identified to 
run type. Spring-run circled in magenta and fall-run or late fall-run circled in aqua 
were identified as either yearlings (spring-run) or too large (fall or late fall) and 
were not included in the data set for estimating PLAD parameters. 
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Figure 6. PLAD Model fits to Juvenile Chinook Salmon Captured in Rotary Screw 
Traps and Identified to Run Type 

Fits of the PLAD model to juvenile Chinook salmon captured in RSTs and genetically 
identified to run type on Battle Creek. Spring-run (top left) in black, fall-run in red 
(top right), and winter-run in blue (bottom left). For each run type, the median 
(solid line), interquartile range (darker region), 95% credible intervals on predicted 
mean size (fork length in mm) (lighter region), 95% credible intervals on observed 
fish sizes (dotted lines), and observed sizes (squares) are plotted. 
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Figure 7. Predicted Proportions in Battle Creek Across the Sampling Season 

Predicted proportions in Battle Creek across the sampling season (i.e., the π in the 
PLAD model). Spring-run (top left) in black, fall-run in red (top right), and winter-
run in blue (bottom left). For each run type, the median (solid line), interquartile 
range (darker region) and 95% credible intervals are plotted. 
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Figure 8. Prediction of Run Assignment by Fork Length at Four Dates in the 
Sampling Season at Battle Creek 

Prediction of run assignment by fork length (mm) at four dates in the sampling 
season at Battle Creek: 

• October 6 (Day 98, top left) 
• December 15 (Day 168, top right) 
• February 23 (Day 238, bottom left) 
• May 3 (Day 308, bottom right) 

Spring-run (black), fall-run (red) and winter-run (blue). Median probability of 
assignment (solid), interquartile range (darker region), and 95%CrI (lighter region) 
are presented for each run type. 
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Figure 9. Battle Creek Juveniles Genetically Identified to Run Type during the 
2025 Outmigration Season 
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Figure 10. Proportion of Spring-run in Battle Creek 

Proportion of spring-run in Battle Creek across all juvenile sizes (top left), fry-sized 
juveniles (less than or equal to 45mm, top right), and smolt-sized juveniles 
(greater than 45mm, lower left). Median proportion (line), interquartile range (dark 
gray), and 95%CrI (light gray) are plotted. 
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Figure 11. Hypothetical Catch Distribution, Initial PLAD Fit, and Updated PLAD 
Fit 

Hypothetical catch distribution from a site (left). Initial PLAD fit to the fork length 
distribution (middle) and updated PLAD model fit after re-estimating the PLAD 
proportions (π)(right). Colors indicate fall-run (red), spring-run (black), and winter-
run (blue). 
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A. Probabilistic Length-at-Date Model Run Type 
Predictions for Sacramento River and 
Tributary Rotary Screw Trap Sites 

Please refer to the file named “Ch 06 App A PLAD Predictions.docx.” 
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