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Context R RS e

Issues to discuss
e What s the Design Flood Problem?

— Issues

— Data management
 Design Flood Approaches

e Information Generation



FLOOD PROBLEM  Zlcstie

"I love a sunburnt country

A land of sweeping plains,
Of ragged mountain ranges,

Of droughts and flooding rains".

Dorothea Mackellar — My Country



Flood Problem 5 BB e

Flood prediction and management remain a
problem for many catchments.

Effective flood management requires knowledge
of the flood risk:

— Probability of flood; and

— Hazard

|dentification of hazard without probability does
not allow risk to be assessed.
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Flood Problem S B e

Historical
— Single flood hydrograph characteristic

 Flow Quantile

Current

— Alternative flood hydrograph characteristics

 Flow Quantile
e LevelQuantile
* Flood Volume
e Rate of Rise of Flood Hydrograph

— Systemfailure
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Flood Problem S O o soner

Problem is the estimation of a statistical
parameter—the probability of a flood
hydrograph characteristic.

Conceptually, this is a data-mining exercise —
essentially the hydroinformatic problem of
data analysis.



Hydroinformatics S5 oty srover

Generation <

Abbott describes hydroinformatics as
the “storage, analysis and use of
information about the aquatic
environment in a computerised
format”.

<

Editing

<

Storage

Ball (2000) used the concept of the
information cycle (see opposite) to
describe hydroinformatic systems.

e

Analysis

<

Presentation
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Data Analysis S -

Three alternatives

1. At-Site Flood

Desired Flood

Freq uency Quantile
Analysis
2 . Reg| OoNna I Sufficient Data Insufficient Data
. Available ? Available ?
Transformations

3. Catchment
At-Site Flood

. . Regional Catchment
Sl m U|at|0n Ffr?alﬁ;zy Transformations Simulation




Data Analysis S e S soner

Sourcing and managing suitable data is an issue.

Data sources are

e Catchment monitoring e Catchment modelling

— Accuracy — Accuracy
— Representative — Predictive robustness
— Homogeneity/ e Regional

Stationarity transformations
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Recorded Data

Standard field station
measures flood level.

A rating curve is used to
translate the level to
discharge.

Reliability of flows is
dependent on rating
curve.

27/08/2012
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Rating Curves

Typical rating curve shown
opposite.

Issues include

 Timing of gauging —
used to generate rating
curve.

Stage

* Levelsabove highest
gauging — extrapolation
problem.

2

Loop rating curve
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Uniform-fiow rating curve

Discharge’
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Rating Curves R RS e

Magnitude of extrapolation can be assessed by
looking at rating ratio -

Flow
Highest Gauge Flow

Rating Ratio =



Rating Curves o e TEone

Likely Rating Curve Error - 222202
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Rating Curves
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Rating Curves

Kuczera (1999) presented
a technique for including
rating curve error in FFA.

This technique is based on

e Bayesian fitting of the
statistical model to the
available data; and

* Error below rating point
insignificant.

log discharge Actual rating

curve

Anchor
point
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Incremental
error

Estimated
rating curve

>

Interpolation
zone

Extension zone  |og stage
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Data Homogeneity

I ;N x e Flood risk appears to vary with

[ V=2 I S S Inter Pacific Oscillation (IPO)
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Data Homogeneity S5 oty srover
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Logl0 Flow
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Regional Transformations 5 RSB e

Characteristics

e Regression relationship

 Based on recorded data
— Assumes catchment stationarity

— Assumes data reliable

e Typical usage requires extrapolation outside
bounds of available used for regression
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Common approach to data generation is
through catchment modelling.

Rainfall
Characteristics

Catchment
Characteristics

Catchment
Modelling
System

—>

Predicted
Flood
Parameters

Data is being generated for frequency analysis —
not for prediction of flood quantile.



Catchment Modelling

Need flow estimates and associated probabilities

e Issues e Scope
Uncertainty in prediction. Range of frequencies.

Absence of data — PUB problem  Range of catchment scale.

Extrapolation. Points and network systems.

e Estimation Methodology

Changing- catchments.

Random storm event: Mathematical Bodll Random initial conditions:
* Rainfall intensity ? of System « Catchment wetness ?
Storm duration ? « Catchment storages ?

» Temporal pattern ? S « Urbanisation ?

- Dry period ? Hydrograph - Time of Year 2



ARR Flood Estimation clcaraaes

Modelling approaches
may be: l Smulation \
1. Single burst; : :
Storm Events (;?n:tlj?al;%:

2. Monte-Carlo; and
3. Continuous simulation. l l ‘

Single Burst Monte-Carlo

|

Assumed At-Site Flood
Frequency
Transfer of . Frequency
Analysis .
Frequency Analysis
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Flood Simulation Approaches RN e

COMPREHENSIVE

Continuous Simulation

Complete
time series of rainfall
(+ other climate factors)

Catchment
rainfall-runoff
response

1

Complete
Streamflow time series




Event Simulation S e

Traditional approach.

Issues include

— Volume of runoff, particularly when most intense
burst used, i.e. existing ARR temporal patterns.

— Storm variability and movement.

— Need for AEP Neutral parameters
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Monte-Carlo Approach Zatal

Based on development of event modelling.

Needs information about variability of input
parameters.

Produces distribution of likely flood events and
hence uncertainty in prediction.
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Continuous Models o

Basic idea is the reproduction of flow variability
in the system.

To achieve this requires consideration of
parameter or information variability.

Also removes the need to assume concurrence
between rainfall and flow frequencies.



Continuous Models o

2 year ARI events
extracted from 100
years of simulated
flows

Differences in shape
(one, two and three-
peaked
hydrographs,
duration and
volume (ranging
from 41to 223 mm)




Parameter Estimation 4 RO B v

Prediction errors arise from

Process errors;
Structural errors in the system;

Data errors in the information used for
modelling;

Parameter errors - input information to the
modelling system; and

Data errors in the recorded data.



Parameter Estimation 4 RO B v

Calibration is concerned with parameter errors
while acknowledging other errors.

ldentification of parameter values is a
hydroinformatic exercise — data mining.



Parameter Estimation 4 RO B v

Desire is generic values for these parameters —
values applicable to more than a single event
and suitable for extrapolation.

Recognised now that there are numerous sets of
parameter values capable of similar
performance.

Hence, a pdf of possible parameter values can
be developed.



Parameter Estimation 4 RO B v

Over-fitting parameter values is a common
problem.

Can be avoided by monitoring of the calibration.

Will not result in best simulation for a single
event but best simulation for numerous
events.



Parameter Estimation

Objective Function Value
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Early Stopping Technique
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Parameter Estimation 4 RO B v

Approach applied to a catchment in Sydney,
Australia.

Alternative models were considered — differing
complexity.

Results were

e 81% Early Stop Point
* 6% Start Point

* 13% End Point



Parameter Estimation Gl

A further complication is the arbitrary
subdivision of parameters into measured and
inferred parameters.

Usually, only values of inferred are sought —
values of measured parameters are assumed
correct.
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Conclusions R RS e

e Design Flood Estimation is a problem in
predicting a statistical parameter.

 This is a hydroinformatic problem — essentially
a data-mining exercise.

e This hydroinformatic problem exists at multi-
levels.
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