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Outline

Jon: Basic concepts, flow monitoring

Dave: Examples from
suspended sediment concentration time series

Brian: Examples from
organic carbon and nutrient time series



What do we mean by:
a high-frequency flux-based monitoring program ?

We discuss the need for
high frequency sampling first.



In most cases, management questions
center on how things change ,
and

what we refer to as the...



Collecting unbiased, unaliased data at
“management timescales” In the delta
Is actually VERY challenging

Invariably high frequency variability
(tides, etc.) gets “In the way”



Temporal variability is strongly influenced
by the following physical forcing
mechanisms (from high freq to low):

(1) Tidal Currents
(2) Wind Speed
(2) Solar Radiation (day/night)
(3) Air Temperature,
which together control
(4) Water Temperatures
(5) Hydrology (river inputs and pumping).



—
Use data from Sacramento River at
Decker Island as an example..
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Sacramento River @ Rio Vista
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Together, these principal physical drivers
create temporal variability at primarily 12
hour, 24 hour, 14 day (fortnightly) and
seasonal timescales.
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Aliasing (sampling too slowly) Example

Plots of Electrical Conductivity at Decker Island

Sample using different strategies
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Conductivity at Decker Island
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COMDUCTIMTY,
EEF
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Conductivity at Decker Island
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Conductivity at Decker Island
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Conductivity at Decker Island
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Flux-based monitoring program?

Measure EVERY THING adjacent to flow stations
(EC, Temp, Chl-a, Turb, OC, FISH!)

Flux = (Discharge)*stuff



Flow Station Network (circa Nov 2013)

Sacramento

-
. Rivar

i— Delta area

ix — San Joaguin
o Riwer
) (.,
\\'-

Falriedd

]
Rio Vista
ThresmileSough .

: Sa.'?:'. Ak Pl
& b DEC 5 4
) o Ditead Gt -.E:'ﬁl

o
2 MID
&% Mddk Fivar
g e
ok

EXPLAMATION

far it State Weabar Project &1
® Exdsting Flow Stations P-Irrﬁll'ljllllm -*vi
CEntral Wally Frofect, -,
pumEing pland —




12 MILES

12 KILOMETERS




Flux-based monitoring program?

By measuring adjacent to flow (V, Q)
we can not only tell how a parameter varies in time..

We can deduce Its
Spatial structure (within a tidal excursion)
and tell where its been and where its going
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So What controls
variability in salinity
at Decker?







rifter tracks during solstice spring tide

Dec 22, 2011
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Animation of salt field

File: salt.field.DSC.avi
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Why do we study turbidity AND sediment?

» Suspended sediment is the primary cause of turbidity in the Delta

» Turbidity is an optical property of water that's great for monitoring
but not for understanding rates of movement (flux) or physical
processes

» The principle of conservation of (sediment) mass allows physics-
based numerical modeling and calculation of sediment budgets

» Sediment transport and geomorphology affects wetland
sustainability, navigation/dredging, levee stability, contaminant
transport, aguatic vegetation, and phytoplankton, in addition to
fish habitat



Concentration and flux

*Suspended-sediment
concentration =
Mass/Volume
(milligrams per liter).
Primary cause of
turbidity in the Estuary.

B
=
(=]
B E
Q
N D
w

200

400
Turbidity (NTU)

Ganju et al. 2007

\

)
(\

2 USGS



Concentration and flux

*Suspended-sediment
concentration =
Mass/Volume
(milligrams per liter).
Primary cause of
turbidity in the Estuary. [SE i = el ot 8l 2007

SSC (mglL)
R
8

*Flux = Mass moving
through a cross section
over a known time
(kilograms per second).
Quantifies movement of
sediment. More useful,
we measure both.




Flow, turbidity, and
sediment stations

Monitoring network
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EDI
sampling
centroids

R #

-

equal flow
compartments




Constituent Method Frequency
1) Water elevation (Jon+) Pressure transducer 15 minutes
2) Index velocity (Jon+) Sideward looking ADCP
3) Point turbidity (Jon+) Optical sensor
4) Discharge (Jon+) Downward ADCP transect | Multiple boat
9) Velocity-weighted cross Equal discharge Lnegsurgtments
sectional average increment (EDI) _u:_'!cng Site
suspended-sediment VISIES
concentration
6) Discharge (Jon+) Index velocity method 15 minutes

(calibrate 1 and 2 to 4)

7) Velocity-weighted cross Calibrate 3to 5

sectional average
suspended-sediment
concentration

8) Suspended-sediment flux
(kg/s)

Product of 6 and 7




Cache Slough: the Delta’s most turbid waters
(and favorable delta smelt habitat)

Sacramento

Average turbidity
WY 2009 & 2010

M -Ki -
organ-King and Schoellhamer 2013, Sommer et al 2011 o= USGS



Sediment fluxes
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Sediment Trapping

1) Mechanisms:

 Dead-end channels and low
freshwater flow

* Tidal asymmetry (flood dominant s
velocities) B2

o Limited tidal excursion

Hastings

2) Trapped sediment mass
undergoes a repeated cycle of
tidal and wind-wave resuspension

Morgan-King and Schoellhamer 2013
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|solated dead-end sloughs

e Create desirable habitat

* Were once a prominent feature of ._
the Delta

» Except for Cache Slough, the Delta
IS now connected waterways with
little isolation

Early 1800s Early 2000s

&

USGS



Flow, turbidity, and
sediment sites

First flush 2012/2013

Where did the sediment
coming down the Sacramento
River go in the Delta?
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Total sediment
flux iIn Tmt

» Sediment dispersed through
Sacramento River distributary
channels (Miner, Sutter,
Steamboat, Georgiana)

» Miner-Cache Slough pathway
(10-15%)

» Georgiana-lower Mokelumne-
San Joaquin pathway (15-20%)
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Georgiana —
San Joaquin
pathway
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WY2011

Preliminary data subject to revision

Deposition = Mass in — Mass out

NORTH DELTA

Trap Efficiency: 23%
Deposition:380 Kt

CENTRAL DELTA

Trap Efficiency: 55%
Deposition:796 Kt

SOUTH DELTA

Trap Efficiency: 67%
Deposition: 332 Kt

2 USGS




Summary: sediment monitoring provides

» Spatial and temporal variation of suspended sediment
concentration and flux

» Knowledge of controlling processes
» Sediment transport pathways
» Sediment budgets

» Data for developing numerical models

Thanks to USGS Delta sediment project colleagues Paul Buchanan, Doug Dean, Joan Lopez, Tara Morgan-
King, Matt Marineau, Amber Powell, Chris Silva, Travis von Dessonneck, Kurt Weidich, and Scott Wright

S orted by the US Bureau of Reclamation and the Interagency Ecological Program b
upp y ureau ' gency gl g ".éUSGS



Marine Geology
Special Issue

A multi-discipline approach for
understanding sediment transport and
geomorphic evolution in an estuarine-

coastal system: San Francisco Bay - MA HINE
o 21 papers available on line and just GEOLOGY

published in Marine Geology volume

INTERNATIONAL JOURNAL OF MARIN
345 GEOLOGY, GEOCHEMISTRY AND GEOPHY.

* Includes sand, mud, coast,
watersheds, Delta, data, models, and
more!

EDITORS-IN-CHIEF: D.J.W. PIPER, DARTMOUTH, N5, CANADA
J.T. WELLS, GLOUCESTER POINT, VA, USA
G.J. DE LANGE, UTRECHT, THE NETHERLANDS

« Editors: Patrick Barnard, Bruce Jaffe, s st
and David Schoellhamer :

Cest




How continuous, co-located, high-frequency, optical® measurements
(AKA Monitoring)
can illuminate processes affecting water
and habitat quality across the Delta and Estuary

Brian Bergamaschi, Bryan Downing, Brian Pellerin, Jacob Fleck, JohnFranco Saraceno, Tamara Kraus, George
Aiken, Emmanuel Boss, and many others in and not in the USGS CAWSC aquatic biogeochemistry group

amostly



Why continuous high-frequency monitoring?




A revolution in monitoring

Commercially-available sensors for:
» Dissolved organic matter (amount, type)
 Sediments / turbidity (amount, size, type)

* Nutrients (nitrate, ammonium, phosphate)

* Proxy measurements (mercury, pathogens)
 Bromide, bisulfide

* Phytoplankton taxonomy

Cost: $1,000 - $20,000+ USD for sensors plus cost of operation
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- 0.8 1 ...to field instrument
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Nitrate Variability — San Joaquin River

Assessing nitrate variability in the San Joaquin River, Crows Landing, CA

(Satlantic ISUS nitrate analyzer)
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Nitrate Variability — San Joaquin River

Assessing diurnal nitrate variability in the San Joaquin River, Crows Landing, CA
(Satlantic ISUS nitrate analyzer)
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Nitrate Loads — San Joaquin River

Difference in instantaneous and cumulative

) ) ) Daily Load (kg nitrate / day) % Difference
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Drivers of nitrate variability - SJR

Combination of discrete and in situ data show
high biological activity in the SJR (right), but no
evidence for direct link between NO4
concentrations and chlorophyll not apparent.
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Why continuous HF monitoring in the Delta?

MANY DIFFERENT TIME SCALES

« Variablility in concentrations and loads related to:
— Variability of inputs

* River concentrations and flows
e Upstream processes

— Tidal action
» Varies by season, wind, etc.

— Biology and whole-ecosystem processes
* Photosynthesis
* Food webs dynamics (e.g. uptake)
« Physical processes (e.g. light penetration)

— Climate and weather
» Episodic events (rainfall, snowmelt)
» Catastrophic events (arkstorms, floods)
« CLIMATE CHANGE

— Land use / management (point and non-point)
 Agricultural runoff (irrigation)
e Urban runoff (storm water, waste water)
» Intentional or unintentional contaminant discharge



STORMS: DOC Time Series at Sleepers River, V]

What does FDOM response to hydrology tell us about organic carbon (and mercury) dynamics in watersheds?

FDOM (ppb QSE)
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Delta monitoring network

Liberty Island Cache Slough Decker Island
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Monitoring versus science?

What What

we want we can
to know measure




Monitoring versus science?

NEW INSTRUMENTATION



Monitoring versus science?

What What

e wante can
‘0 knaweasure

NEW INSTRUMENTATION + NEW METHODS AND MODELS



WFAT WE WANT TO KNOW:

What we car)

Prytoplaniton and the food ywen  measure
e Changesin N and P supply, Nitrogen Nutrients
forms, and N:P ratios cause changes in NO,
phytoplankton community PO
4
e This in turn causes changes in zooplankton NH -+
community, trophic dynamics Lioht :
|
. Net result is change in energy supply to .
E{ISh Seed stocks

PP production

PP Taxonomy
PP location

PP timing




WFAT WE WANT TO KNOW:
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WHAT WE WANT TO KNOW:

Pnytoplanicon

Production
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USGS 381443121405701, LIBERTY ISLAND AT HASTINGS TRACT
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WHAT WE WANT TO KNOW:

Prnytoplanicton taxonormy

Diatoms ———> Mixed —> Crypto + other flagellatess ——————>

Benthic Diatoms
~Chlorophytes
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WRAT We WANT TO KNOW:

Pnytoplaniton taxonormy
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WFIAT WE WANT TO KNOW: Methylmercury

Proxy measurements for high resolved MeHg flux from a Light Gaseous
tidal wetland, Browns Island, CA Mercury
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WFIAT WE WANT TO KNOW: Methylmercury

Methylmercury fluxes and y
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UWFIAT WE WANT TO KNOW: Drinking Water

Lab data from the McKenzie River (left) and continuous FDOM data from the Clackamas River (right)

Turner C6 with FDOM and custom optics
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CONCLUSIONS

Why do we need a continuous HF Delta - Estuary network?

Grab samples alone cannot tell us what we want to
know.

Continuous, co-located, high-frequency measurements
dare necessary to:

— Accurately quantify fluxes

— Differentiate among processes

— Understand spatial relationships

— ldentify long-term trends

New methods and instruments make it possible to
observe and quantify biogeochemical processes,
contaminants, and ecosystem effects IN REAL TIME

It is now possible to get a more comprehensive picture of
habitat and water quality than ever before. We are
already doing most of the work.......



delta from the Sacramento River,
was answered with the installation
of the first hydro-acoustic meter at

61 WE ARE DOING MOST OF.THE WORK ALREADY _
' FOR CONTINUOUS MONITORING IN THE DELTA!! e mameecssaa,

ywing into the the export facilities on the north-
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think you could tell which way the
water was flowing. Surely anything
that looks so much like a river natu-
rally flows downstream, from the hills
to the sea? But the Delta is not a
one-way system, nor is nature entirely
at tha controls. Throw in ocean tides
coming in and out, pumps directing
water from here to there, and sea-
sonal ups and downs, and the only
people who can really tell which way
the water is flowing at any given time
or place aren’t standing on a tule
island. They're sitting in a dark reom
siaring at computer screens showing
the minute-by-minute measurements
of the USGS flow station network.

The network is pretty comprehen-
sive. Over three decades, and with the
help of various state and local agen-
cies, USGS has installed 35 stations at
what scientist Jen Burau calls “every
hydro-dynamically significant flow
split or confluence” in the landscape
of the delta’s 700 miles of channels
[see mapl. Most of these stations
employ a gizmo called a sideward-
looking acoustic Doppler current pro-
filer, mounted on a piling, or channel
marker. These devices bounce sound
wawves off particles in the water across
entire river channels, measuring flow,
also called “discharge,” as a volume
per time [such as cubic feet of water
per second). Small solar panels power
the sensors, and help them relay the
information they collect to computers
in operations rooms and science labs
throughout California.

“We happen to have a flowing
system, and it's flowing not just in one
direction but it’s flowing every which
way, because of tides, and rivers com-
ing together, and pumping,” says Anke
Mueller-Solger, Lead Scientist of the
Interagency Ecological Program for
the Delta Stewardship Council. “Un-
derstanding anything in this system
must start with a good understanding
of flow, and how that interacts with
mare stationary variables like channel
geometry, physical habitat, sediment
beds, and peint sources of pollution.
Flow is a dynamic master variable.”

Fresh water flow is also someathing
25 millien Californians rely on — for
drinking and irrigation watar — in
what has been called the “most man-
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daily decisions about how much fresh
water they can pump to cities and
farms, and when and where. Wildlife
scientists also use this information

to protect fish species endangered by
pumping and loss of habitat. In Cali-
fornia’s long history of wrangles over
water, many resulting court decisions,
biological opinions and water qual-

ity standards have become, to some
extent, reliant on the numbers spit out
by the flow stations.

The one number everyone has
wanted from these submerged out-
posis scattered throughout the delta is
the “net flow, or the amount of water
flowing in a channel with the tidal flows
averaged out. In the early days, getting
this number involved a lot maore than a
few clicks on a key pad. The technology
to measure the pulse of frash water
maoving through a system overwhelmed
with twice-daily ocean tides simply did
not exist before the mid 1970s. Particu-
larly challenging was to try to extract
this number in the 500 meter wide
channels in the delta.

But that’s exactly what the state’s
Department of Water Resources
IDWR] set gut to do in the late 1920s.
Researchers first stretchad a cable
across the channel, called a tag line,
then attached their boat to the cable.
As the boat moved through 12-24
stations along the cable, they used a
device called a Price AA meter to take
individual water velocity measure-
ments. By summing the flow curves at
each station between tidal peaks, DWR
produced a snapshot of net discharge
at that time and place.

“These were incredibly labor-in-
tensive, even Herculean, figld efforts,
working with multiple boats over 24-
hour periods, but they did an amazingly
accurate job given the taechnology they
had,” says USG5 scientist Jon Burau.

Eight decades later in the 2010s,
measuring net flow involves aqually, if
not more, complex efforts, but tachnol-
ogy and computers do mast of the heawvy
lifting. The biggest challenge overcome
by the hydrodynamics taam of the
USES Californiz Water Science Center,
which runs the network, has been to
find away — through data collection,
math and modeling — to isolate the
small signal [net flow) fromwhat they
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to-south movement of water from
central to south delta. So
121715 they installed two more

- _I-fm'? Sacramento

&

| acoustic velocity maters at
0ld River at Bacon Island
and at Middle River [1787].
In the early 1990s, water
project operators installed
two stations in the Walnut
Grove area, so they could
find out how much water

. 7| was flowing from the Sac-
i ramento River into tha cen-
tral Delta through the Dalta
Cross Channel and Geor-
giana Slough, the so-called
Delta Transfer Flow. Fi-
nally, a combination of four
stations in tha south delta,
Jjust upstream of the export
pumps, were installed to
estimate delta outflow.
Below is 2 description of

L the groups of stations used

to address specific regional
scale questions.

Delta Outflow - The sum

P .. of the measured flows from

stations at Rio Vista [RIO],

odi & Three Mile Slaugh [TMS). San

Joaguin River at Jersey Point

San Joagquin

River/Central ™| guflow. Delta outflow is a key
Delta Exchanges ecosystemn metric because it

[JPT] and Dutch Slough [DCHI
are used to estimate delta

State Water Project |
Pumnping Plant =~

Centra}:\:'a llay Project

ail &
= Tracy
5
|

1 ] 12 MILEE
]

Vernalis

5] is @ measure of water received
by San Francisco Bay [i.e.
inputs less exports and con-
sumptive use].

=2 == Delta Transfer Flow - The

delta transfer flow is comput-
ed as the difference between
the flows measured at sta-

""/ —— tions WA and WEB, two flow
Export Fi \_\ stations located near Walnut

Grove. The calculation helps
water managers estimate
the amount of Sacramento
Riverwater that flows inta

central delta.

i the central delta through the
-~ Mokelumne system [the Delta
—| Cross Channel and Georgiana
Slough). The delta transfer
flow 15 critical for maintain-
ing salinity standards in the
|

Old and Middle Rivers -
The sum of the flows at sta-

i
® tiens OLD and MID represent

1 et e |1

the flow to the export facili-
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