Biomass and Grazing of Corbicula and
Potamocorbula today and in the future

1) What controls bivalve distribution and biomass today?
2) Can we influence their distribution today?

3) How will those controls affect their distribution with
restoration and climate change?
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What we have learned

Potamocorbula and Corbicula populations overlap in low salinity
zone - larval and juvenile salinity tolerance is about 2

Corbicula and Potamocorbula can both control phytoplankton
biomass and they have opposing seasonal grazing cycles - does a
spring bloom help?

Both bivalves appear to be food limited

Both bivalves thrive in restoration habitat except seasonal
flooded areas and small intertidal sloughs

Fall increase in freshwater in 2011 limited Potamocorbula
distribution and grazing but probably not enough for
phytoplankton to bloom

We have found Potamocorbula distribution is limited by
predation and the salinity required for reproduction

Neither bivalve is likely o be effected by an increase in
temperature and Corbicula’s reproductive season may lengthen.




Why we need to consider Potamocorbula and Corbicula
distribution and grazing in restoration plans.
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Why Corbicula?

Corbicula distribution overlaps with
Potamocorbula and is increasing in
biomass at some locations.
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Potamocorbula and
Corbicula are both
present in the
ecologically sensitive
Low Salinity Zone and
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Biomass and Grazing of Corbicula and
Potamocorbula today and in the future

1) What controls bivalve distribution and biomass today?



At the Delta-scale high phytoplankton biomass is only found in areas
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where clam grazing is low. However the converse is not true - it's not
all about clams but we do need to understand their distribution.
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Clam species settle upstream and downstream of a
salinity of 2 due to salinity folerance of juveniles.
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Once settled, both bivalves have a legacy distribution as
adults tolerate a wider salinity range.
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Persistent observations
on distribution:

1. Potamocorbula grazing is
greater in fall than spring

2. Corbicula grazing rate is
larger in spring than fall in
many areas

3: 6razing rate is lower
around the confluence then
upstream and downstream
during both seasons.

4. Shallow water grazing
rate in Grizzly, Suisun and
Honker Bays is very low in
spring ---
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This persistent and
spatially consistent
pattern is good news if
other environmental
factors are good for a
spring bloom.
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At a finer temporal
scale, Potamocorbula...

..biomass and thus grazing rate
slowly increases from the spring
minimum to a peak in fall in wet
years.

..biomass is greater in spring and
the fall increase starts earlier as
the years become drier.

This seasonal pattern could be
result of delayed recruitment,
increased mortality or reduced
growth rate with wetter
conditions.

[Grizzly Bay (D7) 1986-2012
- data binned by water year]

All Years - Average Monthly Grazing Rate

2

Wet Years - Average Monthly Grazing Rate

2

Above Normal Years - Average Monthly Grazing Rate

2

Dry/Below Normal Years - Average Monthly Grazing Rate

2

Critically Dry Years - Average Monthly Grazing Rate

2
I-----llllll



All Years - Average Monthly Recruit Abundance
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Biomass and Grazing of Corbicula and
Potamocorbula today and in the future

2) Can we influence their distribution today?



Can we alter salinity to limit Potamocorbula without
encouraging Corbicula? (P. Moyle)

Loss Rate to Clams
(/day)

GR turnover (/day)

Moo oo oo
SE8B8

IIIE
[ 7 R
m = =




Grazing in Grizzly
and Honker Bay was

lower in fall of wet
year 2011---

Boxplot by Group
Variable: Grizzly Bay
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Water Column
Turnover Rate (d?)

Grazing in Suisun

Marsh was lower in

fall of wet year
2011---

Boxplot by Group
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" Average Monthly G.ra.zing rate at D7 in 2011 was
similar to the wet year average

Grazing Rate — Wet s
Years except in early fall.
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Conclusion: Grazing rates in the shallow phytoplankton growth
habitat were low enough to allow a bloom (assuming zooplankton
grazing, light, nutrients, residence time are agreeable) in spring of
2009-2011 and but probably not fall 2011.
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Biomass and Grazing of Corbicula and
Potamocorbula today and in the future

3) What will determine their distribution with
restoration and climate change?



The "bottleneck” for Potamocorbula may be the salinity
limits on gametogenesis and spawning.
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The period of reproductive activity may increase for
Corbicula with warming.

Reproductive Adult
(minimum length:
Growth to 6-10mm)
maturity
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months
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Restore Where?

Potamocorbula distribution range
1986-2012.

Corbicula distribution range
1977-2012.




Both species can inhabit
channels, sloughs, lakes
and rivers but neither do
well with frequent and
prolonged exposure




Restoration Options May be Limited

® Shallow water habitat and/or its connecting waterways are
good clam habitat.

Small sloughs may not be good habitat but the larger

@ sloughs that they empty into may be excellent bivalve
habitat. Contribution of primary producers relative to
grazer consumption in connecting areas needs to be
modeled.

Seasonal flood plains will not be good for either bivalve
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Q: How will grazing rates change?

(< ->phytoplankton model)

Q: How will distributions and biomass
change? (= contaminant model)

Phytoplankton

Model \

An energetics
model grows the
bivalves and a
population model
estimates bivalve
biomass
distribution
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Why? Recruits have declined at both locations. Has food
increased at confluence and decreased at Rio Vista?

Median Corbicula Biomass/m2
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Average Monthly Recruitment at D7 in 2011 was a bit
Recruitment- below average in spring
Wet Years 2011, started a month later than

the average in fall, and then was
I B _ I I I

way above average in mid fall.
2011 Average Monthly 2011 Residual Recruit Abundance
11 Recruitment

Potamocorbula Recruit Abundance(#/0.05 m?2)

Deviation from Mean Recruit
Abundance (#/0.05 m?)
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Both clams can limit
phytoplankton biomass
through grazing




Both clams can limit
phytoplankton biomass
through grazing
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