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The Carbon Pump: plant growth, especially roots and rhizomes,
drive carbon sequestration.

A GFOWiﬂg Need: to quantify above and belowground carbon

productivity rates over large areas in the San Francisco Bay-Delta
region

Research question: Can we make remotely sensed estimates of
wetland plant productivity: aboveground and belowground.

This project is funded by a NASA ROSES New Investigator Program in Earth
Sciences to Kristin Byrd, USGS
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Sacramento-San Joaquin Delta
- w7 MO " O i

A r—
> SN
,~1’f{( a3
¥ B
* L% N
;
2

2 4

+!
- -
Vet Y

The Sacramento-San Joaquin Delta is at the heart of
California’s water supply. This inland delta, where two
major rivers converge and mingle with San Francisco Bay
tides, has been re-engineered and re-plumbed over the
last 160 years to meet the needs of a growing state.
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Historically, the Delta was
an extensive freshwater
marsh with numerous
rivers, sloughs and

lakes...
(The Bay Institute, 2003)
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The Delta Historical Aquatic Ecosystem




The Delta today...

The Delta is very different than it
was 160 years ago: it is lower-
lying, with less water flowing
through and over it's
landscapes; it contains far fewer
wetlands than before yet it
supports more people; and it is
more disputed and argued over.

A patchwork of islands of
different land uses - agriculture,
wetlands, urban — held together
by levees which support a
network of rivers and sloughs
that convey Sierra water to the
rest of the state.

It is a place of great serenity,
and great challenges.




The importance of Deltas: Blue Carbon
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Freshwater marshes, where emergent plant growth leads to peat
formation, are found in some of the most significant coastal areas of the
the world, in the United States these sites include South Florida, the
Mississippi River Delta, and the Sacramento-San Joaquin River Delta.

The carbon stocks and future cumulative carbon storage of these marshes
are referred to as Blue Carbon, and play an important role in managing
atmospheric carbon (Pendleton et al. 2012)



Wetlands were once an important part of the Delta ecosystem...

What benetfits might their restoration convey on today'’s
Delta system?



Annual CO?, CH4 and GHG budgets in tons/acre
CO?-equivalence (May 15t 2012- Apr 30t 2013)
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The USGS Carbon Capture Wetland Farm site on Twitchell Island
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Impounded and flooded in 1997
Objective — to reverse land subsidence
and study the effect of water depth on
carbon storage potential in re-
established wetlands.

Slide credit: Kristin Byrd



USGS Wetland Farm
Demonstration Project
1997- Present

2 3ha wetlands:

« Continuously flooded
* Non-tidal system

« Water is managed

Project Chief: Roger Fugii
Lead Scientist: Robin Miller

Measurements include:

* Land —surface elevation change and
sediment accretion

* Plant biomass production

« Decomposition of organic matter

« Gaseous CO2 and CH4 fluxes

* Environmental factors (e.g. pH,
temperature, dissolved oxygen, etc)




Wetland as Carbon Farm: Increased peat
\ | growth through time
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Imagery sources:
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This photograph of the southwestern United
States, taken in November 1966 during the
Gemini XIlI mission, was among those that
inspired the Landsat program.

History of Earth

Observation

July 23, 1972 Landsat 1 was launched. We had our first earth-watching, civilian
science satellite. The instruments aboard recorded information in four spectral
bands: red, green, and two infrared.

Remote sensing continued through the decades to follow, making modern earth
system science, landscape ecology, and many other fields possible.

http://earthobservatory.nasa.gov/




Remote Sensing
Platforms

There are numerous ways
to get remotely sensed
data:

spaceborne, airborne and
ground-based platforms

NASA Science
Serving Society

Over the past three decades, NASA's
observations of the Earth and the Sun
from space have dramaically acvanced
owr knowledpe of how our planet &
changing, Thase cbservatons anable
scientists 10 engape in ressarch that
requires pursuing a holistic under-
standing of the Earth-Sun system,
including tracking the recovery of the
ozcne hole, improving pradictions of
natural hazarcs, understancing the
shrinking of Arctic ice, and tracking the
affects of sclar storms on Earth,

1 addition to answering scientific
quastions, NASA rasaarch, observa-
tions, and models are alse of practical
use to decision-makers, NASAS
Agpled Sciances Frogram benchmarks
the uses of NASA research results for
dacision support, quantifying the
improvemeants cur partner organiza-
tions ane able to make In thair
decision-support systems by their
incorporation of NASA observations
and model mesults, NASA engages
public, private, and academic organi-
zations in nnovative approsches for
using science information enablec by
spacecraft obssrvatories to provide
decision support to sarve scciety

The NASA Applied Sciences Program
axpands anc accelerates e use of
knowledge, data, and technologies
resulting from NASA science research
through twelve applcations of national
priority: Agricultural Efficiency, Air
Quality, Aviatian, Carpan Management,
Coastal Managament, Disastar Manage-
ment, Ecological Forecasting, Energy
Management, Homaland Security,
rivasive Species,
Publc Haalth, and

Remote Sensing and Global Environmental Change, First Edition. Samuel Purkis and Victor Klemas.
© 2011 Samuel Purkis and Victor Klemas. Published 2011 by Blackwell Publishing Ltd.



Dominant factor causing leaf reflectance:

Leaf pigments | Cell structure ! Water content
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Remote Sensing and Global Environmental Change, First Edition. Samuel Purkis and Victor Klemas.
© 2011 Samuel Purkis and Victor Klemas. Published 2011 by Blackwell Publishing Ltd.

The spectral reflectance curve

Everything reflects, absorbs and transmits light energy differently, and
differently across the spectrum



Photographs © Eric Hunt
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Typical wetland plant reflectance curves

reflectance

1~ Ty
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wavelength (nm)

Typha spp. S. acutus

Average mid-summer reflectance spectra for Typha spp. and Schoenoplectus acutus
(n=10 for each species).



What your computer sees...

What the world looks like...

80 72

Green Band
Red Band

NIR Band

Multispectral barids, _
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Remotely sensing allows for:

Broad spatial coverage Pixel, Digital Number (DN)
Monitoring and repeated measurements

Imagery from inaccessible or remote locations

Information about reflectance outside of the visible range of the EM spectrum



geospatial technologies

Mapping and

Management

A very high percentage (up to
87% recorded in one survey) of
natural resource managers use
one or many types of
geospatial technologies to
collect, visualize, integrate or
interpret their information
about natural resources.

* There are many things to
consider with geospatial
technology: choice of satellite
sensor data, cost, labor

Assessment of Geospatial
Technologies for Natural Resource |,
Management in Florida

l Sowmya Selvarajan, Ahmed Mohamed, Timothy White, and
Natalie Boodram

At a time when growing populafions are taxing the earth’s resources as never before, natural resource
managers and users are discovering the power of geospatial technologies. These evolving technologies, once
expensive and exclusive fo domains of researchers and scientists, are now the choice of local, state, and
nafional resource managers around the globe. This research presents the results of a preliminary survey of
benefits and limitafions of geospatial technologies for natural resources applications in the state of Florida.
The survey was sent to users and producers of relevant geospatial technologies applicable to natural resource
management. Results from 134 respondents show that 98% of the organizations surveyed sfill conduct field
surveys for data collection, monitoring, and inventories, while 88% of those organizations develop maps fo
summarize and visualize their data. Approximately 87% of the surveyed organizations use one or many types
of geospatial fechnologies fo collect, visualize, integrate, or inferpret their information about natural resources
with the most common technologies being aerial imagery, geographic information systems, and global
positioning systems, followed by topographic maps and satellite imagery. However, there were also some
available technologies in which their capabilities were little known or appreciated by these organizafions such
as terrestrial light detection and ranging and integrated mapping technology. These results will serve os o
source of information regarding how geospatial technologies are used in Florida and their current real or
perceived limitations. The study is also important for educational insfitufions and producers o provide
appropriate training for basic technologies and fo encourage users to infegrate the latest and cost-effective
geospatial technologies efficiently.

integrated information needed for making
sound decisions across a range of scales, local
to global. Fortunately, geospatial technolo-
gies have evolved to the point where georef-
erenced remotely sensed data are available
more than ever before and computing power
and geospatial information management
tools are in place to allow users to effectively
make these informed decisions (Merry et al.
2007). The US Department of Labor inden-
tified geospatial technology as one of the
three most important emerging and evolv-
ing fields (along with nanotechnology and
biotechnology) (Gewin 2004). Also, the de-
partment identified a 35% annual growth
rate of the geospatial market because of its
diverse applications and a commercial sub-
section of the market expanding at a rate
of 100% each year (High Growth Industry
Profile 2008).

Several geospatial technologies are ac-
tively being used in management and con-

ABSTRACT

Keywords: geospatial, natural resource, Florida, general

ur world’s growing population
O places increasing pressure on
managers and policymakers as
they face extremely complex problems in the

quest for sustainable development, utiliza-
tion, and conservation of natural resources.
They need rapid, inexpensive, and powerful
technologies to provide the data, maps, and

servation of natural resources, including re-
mote sensing from terrestrial, aerial, and
satellite platforms with various sensors;
global positioning systems (GPS); and geo-

Received August 29, 2008; accepted February 26, 2009.

Sowmya Selvarajan (sselvarajan@ufl.edu) is PhD student, Geomatics, School of Forest Resources and Conservation, University of Florida, 304 Reed Lab, PO Box
110565, Gainesville, FL 32611. Ahmed Mohamed (amohamed@ufl.edu) is assistant professor, Geomatics, and Timothy White (thwhite@ufl.edu) is professor and
director, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611. Natalie Boodram (nboodram@ufl.edu) is PhD candidate,
School of Natural Resources and Environment, University of Florida, Gainesville, FL 32611. The authors thank Dr. Linda Demetropoulos, Dr. Martha Munroe,
and Dr. Scot E. Smith, who commented on the survey design and provided lists of contacts. In particular, Dr. Demetropulos facilitated the use of the land manager’s
listserv of the Natural Areas Training Academy of The Nature Conservancy.

Copyright © 2009 by the Society of American Foresters.

242 Journal of Forestry * July/ August 2009

Selvarajan et al. 2009

required for processing as well
as the level of error associated
with its use.



Research questions:

1. Can we estimate aboveground (AG) biomass with remote
sensing?

2. Can remotely sensed estimates of AG plant productivity
be linked to belowground (BG) biomass and productivity of

emergent marsh vegetation?




Background information for this talk

« Byrd, K.B., J.L. O'Connell, S. Di Tommaso, and M.
Kelly. Evaluation of sensor types and environmental
controls on mapping biomass of coastal marsh.
Accepted in Remote Sensing of Environment.

— This work looked at optimal spectral features in situ and with
satellite reflectance data to develop predictive models of
aboveground biomass for common emergent freshwater marsh
species, Typha spp. and Schoenoplectus acutus

« O’'Connell, J.L., K.B. Byrd, M. Kelly. 2014. Remotely-
sensed indicators of N-related biomass allocation in
Schoenoplectus acutus. PLOS One. 9(3):e90870

— This work demonstrated that nutrient availability caused
differences in foliar N and biomass allocation for
Schoenoplectus acutus under a simple N-addition experiment




Study sites in the delta:

Mayberry Farms on Sherman Island, and Twfitchell Tslapde
129

.' __San Francisco
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Sources: Esri, GEBCO,
‘NOAA, National Geographic,
‘DelLorme, NAVTEQ,
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Study sites in the Delta: Mayberry Farms, Sherman Is. and Twitchell Is.

Historically part of extensive freshwater perennial peat marshes of Delta. Drained and
cultivated with row crops beginning in the mid-1800’s, resulting in subsidence of deep

peat soils to below sea level. They have been restored to freshwater wetland
impoundments.

Mayberry: 38 ha, impounded 1990, but vegetation established 2010
Twitchell: 6ha, impounded and flooded in 1997



Goal 1: Aboveground plant biomass

Aboveground plant biomass is an important input
parameter to models that forecast how coastal marsh
elevations will respond to sea level rise, and it can be used
to estimate belowground biomass and root:shoot ratios.
What can we predict with remote sensing?

Byrd, K.B., J.L. O’Connell, S. Di Tommaso, and M. Kelly. Evaluation of sensor types

and environmental controls on mapping biomass of coastal marsh. Accepted in
Remote Sensing of Environment.



Remote Sensing of
Coastal Wetlands

Landsat TM, SPO'T, and imaging spectrometers
will enhance remote sensing research on wetlands

M. A. Hardisky, M. E. Gross, and V. Klemas

oastal wetlands form a highly

productive buffer zone be-

tween the sea and the upland.
They play an important role in car-
bon reduction (energy fixation), nu-
trient assimilation, geochemical cy-
cling, water storage, sediment
stabilization, and as a nursery habitat
for fish and invertebrates. These physi-
cal contributions, as well as less tangi-
ble aesthetic, educational, and recre-
ational values (Reimold and Hardisky
1979), suggest that coastal wetlands
are important for maintaining the qual-
ity of coastal environments.

Until the late 1960s, most wetlands
rescarch took an academic approach,
examining the ecology of these ubig-
uitous coastal habitats. Once the
probable values of wetlands began to
emerge, legislative activity at the state
and national level (Haueisen 1973)
mandated governmental agencies to
inventory wetlands and regulate their
use. The need for a rapid, cost-cffec-
tive method for mapping large tracts
of wetlands necessitated the use of
remote sensing.

Mapping coastal vegetation

Remote sensing specifications for

M. A. Hardisky is an assistant professor
in the Biology Department, University of
Scranton, Scranton, PA 18510; M. F
Gross is a graduate student and V. Klemas
is a professor and director of the Center
for Remote Sensing in the College of
Marine Studies, University of Delaware,
Newark 19716. Their research addresses
remote sensing of coastal and estuarine
wetlands and vegetation. © 1986 Ameri-
can Institute of Biological Sciences.

JulylAugust 1986

Spectral data give
biomass and productivity
estimates that are close to

harvest estimates

mapping coastal vegetation vary
greatly, depending on desired map
accuracy and spatial patterns in the
vegetation (Gallagher and Reimold
1973). Color infrared photography
emerged as the preferred photograph-
ic technique primarily because it pro-
vides excellent contrast between up-
land and wetland vegetation,
simplifying boundary decisions (An-
derson and Wobber 1973, Reimold et
al. 1972). Carter (1978, 1982) thor-
oughly summarizes mapping tech-
niques used by various states.

In addition to mapping and areal
quantification of wetland plant com-
munities, several studies have used
aerial photography and appropriate
ground measurements to quantify
biomass and productivity for large
wetland areas (Reimold et al. 1973,
Stroud and Cooper 1968). The color
infrared photographs were essennally
used as templates from which the
areal extent of various color tones
(corresponding to different vegetation
communities) could be determined,
and the appropriate biomass and‘or
productivity values from ground mea-
surements could be assigned to each
color tone, The resulting combination
provided an effective means of ex-
trapolating a limited number of

ground samples to a much larger
marsh area.

When the Landsat satellite series
was launched in the carly 1970s, mul-
tispectral scanner (MSS) data became
available. The coarse resolution of the
data (57-m X 79-m pixels) limited
surveys to relatively large tracts of
wetlands, and MSS data were usually
supplemented with high-resolution
acrial photography to improve classi-
fication accuracy (Anderson et al.
1973, Carter and Schubert 1974, Kle-
mas et al. 1975).

The advent of digital spectral data
in specific wavebands sparked a new
era in remote sensing. Aerial photog-
raphy was no longer the only source
of synoptic information. Landsat
MSS outpur was already in digital
form, allowing direct, quantitative
treatment of radiance dara. Spectral
reflectance of wetland canopies mea-
sured from the ground using spectro-
radiometers (continuous spectrum;
Carter and Anderson 1972) and fixed
band radiometers (spectral bands
simulating Landsat MSS and thematic
mapper [TM]; Best et al. 1981, Budd
and Milton 1982, Ernst-Dottavio et
al. 1981) provided information sug-
gesting the potenual discriminative
power of satellite data. Ground-gath-
cred spectral information constituted
the basis for interpreting and analyz-
ing spectral signatures recorded from
satellites.

Spectral information could also be
used to describe characteristics of a
single plant canopy. Early work by
Bartlett (1976, 1979) determined
green biomass, percent live biomass,
total biomass, and canopy height to
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Optical remote sensing of
the biomass of emergent
marsh vegetation has its
origins starting in the 1980s,
primarily in Spartina
alterniflora-dominated
marshes in the eastern
United States, where it was
established that biomass can
be modeled with vegetation
indices such as the
normalized difference
vegetation index (NDVI
calculated from hand-held
radiometer reflectance data
e.g. Hardisky, Klemas, Gross,
Jensen).
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Main Questions: Goal 1

How well can hyperspectral and multispectral bands derived
from field spectrometer data predict aboveground
biomass, especially at high biomass values, of two common

emergent plant species?

How does water inundation influence biomass prediction
accuracy and error?

Can species-specific biomass models perform better than
mixed-species models?

What are the associated uncertainties of the predictive

statistical models for biomass and biomass maps produced
with Hyperion, Landsat 7 and WV-2 satellite imagery?



Remote sensing of AG biomass: Field
data

Measurement of plant biophysical characteristics (%
cover, plant height, water depth) at Tm? quadrats, plus
sampled detailed biomass from allometry at 0.1m? sites.
Reflectance data with ASD field spectrometer were
taken at nadir above the canopy at a consistent height of
4 m from ground level using a 3-m optical fiber cable,

producing a field of view of 1.8 m. ) 2 A7

n = 539 sites, over
2011-2012

."




Field Measured AG Biomass

Measured at 540 plots over the two sites.

« Average biomass 987.5 g/m?

« Ranged from 0 to 5233.8 g/m?

Site:

« Sherman Island: 1,834.1 g/m?

« Twitchell Island site 790.4 g/m?

Seasons:

« May: 617.7 g/m?

« July: 1,423.9 g/m? (maximum values were found in
August)

« September: 1,014.5 g/m?

Species:

* Typha spp. plots higher in biomass, with mean biomass
of 1,138.5 g/m? compared to 770.6 g/m? for S. acutus.

Water:

* The low water plots (<15 cm water depth) averaged
1,037.3 g/m? and represented 46% of the total samples.
The majority (58%) of the low water plots were pure

Typha spp. plots.



Remote sensing of AG biomass:
spectral information

Landsat: 30m, 7 bands

Hyperion: 30m 200 bands

We used simulated bands and actual data from:

1. Hyperspectral, moderate spatial resolution Hyperion sensor

2. Multispectral, high spatial resolution Digital Globe World View-2 sensor
3. Multispectral, moderate spatial resolution Landsat 7 sensor

to scale up the best statistical models and produce maps of aboveground
biomass over a range of spatial, temporal and spectral resolutions.



Remote sensing of AG biomass: Analysis

We used partial least squares regression (PLS), a multivariate analysis for
selecting optimal spectral features.

PLS is similar to a PCA, in that it uses eigenvector-based techniques to reduce
many multicolinear predictors, such as spectral data, to independent

components that maximize correlation among predictors and a single response
variable.

Instead of selecting a few spectral bands as predictors PLS extracts the most
useful information from all available measured spectra into non-correlated

components to help explain response variable, live green aboveground
biomass.

Model: measured spectra => AG biomass



Remote sensing of AG biomass: Analysis

Model: measured spectra => AG biomass

1. Simulated spectra from 3 sensors => AG biomass

2. Simulated spectra from 3 sensors, water depth => AG biomass
3. Simulated spectra from 3 sensors, pure species => AG biomass
4. Remote sensing imagery => AG biomass

For all models, we use 20% to perform cross-fold validation, and report
variance (R?), the RMSE (actual vs. predicted biomass measurements) of the

validation dataset and the 95% confidence intervals of RMSE.



Remote sensing of AG biomass: Analysis

Explain
@ predictign
>
R? g
Choose # ®
components S
number of components Input variables

Model: measured spectra => AG biomass

1. Simulated spectra from 3 sensors => AG biomass

2. Simulated spectra from 3 sensors, water depth => AG biomass
3. Simulated spectra from 3 sensors, pure species => AG biomass
4. Remote sensing imagery => AG biomass

For all models, we use 20% to perform cross-fold validation, and report
variance (R?), the RMSE (actual vs. predicted biomass measurements) of the
validation dataset and the 95% confidence intervals of RMSE.



PLS results: Simulated imagery > Water level

Predicting AG biomass with simulated Hyperion, Landsat, Worldview-2 bands + field
spectrometer reflectance data.

m-mm Landsat 7 m

# PLS components

-

R? 0.46 0.40 0.39
RMSE 560.9 1 570.3 573.5
%RMSE 15.7% 16.0% 16.1%

# PLS components

R? 0.57 0.60 0.61
RMSE 533.7 518.6 469.2
%RMSE 16.0% 15.5% 14.1%

RMSE = root mean square error of predictions from test dataset in g/m?
%RMSE = percent normalized RMSE [RMSE/(xmax-xmin)*100]



PLS results: simulated imagery > species

Predicting AG biomass with simulated Hyperion bands + field spectrometer reflectance data.

# components 3 1 1 1
R? 0.25 0.36 0.02 0.06
RMSE 435.5 255.8 453.4 609.1
%RMSE 24.9% 26.6% 30.0% 34.3%
# components 1 1 3 5
R2 0.5 0.30 0.49 0.71
RMSE 601.3 252.5 724.6 526.5
%RMSE 28.5 24.0% 23.1% 21.0%

RMSE = root mean square error of predictions from test dataset in g/m?
%RMSE = percent normalized RMSE [RMSE/(xmax-xmin)*100]
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PLS loadings and biomass

Loadings vs. wavelength (excluding water
absorption wavelengths) for PLSR of
aboveground biomass with simulated
Hyperion, Landsat 7 and World View-2
bands derived from field spectrometer
reflectance data.
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Predicted and observed
biomass
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PLS Results: Imagery

Predicting AG biomass with Hyperion, Landsat, Worldview-2 bands

mm

# components

R? 0.27 0.56 0.45
RMSE (g/m?) 620.9 556.5 659.7
%RMSE 33.5 20.9 21.5

RMSE = root mean square error of predictions from test dataset in g/m?
%RMSE = percent normalized RMSE [RMSE/(xmax-xmin)*100]



PLS Results: Imagery

Predicting AG biomass with Hyperion, Landsat, Worldview-2 bands

Plots of predicted to observed
biomass based on PLSR of
aboveground biomass with

reflectance data from Hyperion,
Landsat 7 and World View-2 satellite
Images.
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Vegetation Type Map: Spectral unmixing

Vegetation map, July 2011, Digital Globe World View-2 1.8 meter satellite image
(Stefania Di Tommaso; Lisa Schile, U.C. Berkeley)

- water
|:] floating vegetation
[ ] willow

|:| S. acutus
- Typha spp.
|:] thatch

- unpaved road




Mapping predicted above-ground

biomass
World View-2 Landsat 7 Hyperion
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Mapping predm:ted above-ground

World View-2

biomass

Twitchell Island

Measured biomass, 9/7/12: 1,357 g/m?
Hyperion: 1,419 g/m?

Landsat 7: 1,141 g/m? e
L,

World View-2: 1,274 g/m? =gy | i
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5 Hyperion
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Conclusions from Goal 1

We modeled biomass of emergent vegetation with field spectrometer
and satellite (multispectral and hyperspectral) data.

1.
2.
3,
4.

S.

PLS helps deal with multiple colinear features; shortwave infrared
bands and multi-temporal datasets improved biomass prediction.

Water inundation interacting with plant structure controlled
biomass model accuracy.

Typha spE. models predicted biomass better than S. acutus
models, but the pooled dataset was best.

Use of narrowbands did not significantly improve biomass
predictions over broadbands.

Large RMSE reflects water effects, variation in species mix, thatch
cover and floating aquatic vegetation across samples, scaling the
biomass measurements.

Maps might help track Blue Carbon, sea level rise and land use effects
in coastal marshes.

Byrd, K.B., J.L. O’Connell, S. Di Tommaso, and M. Kelly. Evaluation of sensor types and environmental
controls on mapping biomass of coastal marsh. Accepted in Remote Sensing of Environment.



Goal 2: Belowground plant biomass

Belowground biomass is a large component of overall
carbon. Can we infer and measure plant belowground
biomass and productivity through root:shoot ratios and
root production? Can we then link with remote sensing
estimates of aboveground plants?

O’Connell, J.L., K.B. Byrd, M. Kelly. 2014. Remotely-sensed indicators of
N-related biomass allocation in Schoenoplectus acutus. PLOS One.
9(3):e90870



Main Questions: Goal 2

1. Can percent total N concentration in leaves be used to
estimate belowground biomass?

2. Do remotely-sensed vegetation indices indicate
belowground plant response to eutrophic conditions?

Relationships between leat N and belowground biomass might
assist estimation of spatial variation of root:shoot ratios,
supporting regional carbon monitoring efforts.



Belowground productivity: importance
within coastal freshwater marsh

* Plant belowground net primary productivity
(BNPP):
— Accretes soil to increase marsh elevation
— Alleviates flooding as sea level rises

— Peat and soil organic carbon




Measuring BG biomass can be

difficult

Belowground NPP scales
with aboveground NPP, but
fluctuates with:
Light, competition,
temperature, phylogeny and
nutrients
Two hypotheses on nutrient
use:

Balanced growth hypothesis
(Shipley & Meziane 2002)

Isometric growth




Belowground biomass hypotheses

 Balanced-growth hypothesis (optimal partitioning
theory):

— all else being equal, plants allocate growth towards the
most limiting resource - towards shoots when light is
Iimiteg, or towards roots when nutrients or water are
imitea.

e |sometric allocation model:

— above and belowground biomass scale equivalently
across multiple environmental conditions

* |n both situations, leaf N concentration can inform
belowground biomass estimates.

— In the balanced growth case, additional nutrients, such
as N, increase shoot growth but do not increase
belowground biomass equally, therefore leaf N scales
with root:shoot ratios.

— Plants responding isometrically to nutrient addition will
have stimulated below and aboveground biomass and
constant root:shoot ratios.




Remote sensing of AG+__BG_‘_b|omas

field data

Plant growth chambers at Mayberry Slough
randomly assigned to control or N-addition
treatments which were physically separated, |
but hydrologically similar. e
» Added nitrogen to half of the root cores, f
and measured root and leaf growth; |
* Measure leaf nitrogen;
* Measured spectral reflectance of plants.

Mayberry Slough
Wetland

®

" Ingrowth root "
cores plots 8

Field
samples




After harvest in October
2012, plants were sorted
into aboveground biomass
(stems, leaves and
inflorescences) and
belowground biomass (roots
and rhizomes).

All plant biomass was oven
dried at 40°C until all plant
tissue water was removed.

We defined root:shoot ratio
as the ratio of all harvested
belowground and
aboveground biomass.




Remote sensing of AG+BG biomass:

spectral data

Canopy reflectance spectra (350 — 2500
nm) were obtained over each plot near
midday on 25 September 2012 (6 days
before plant harvest) with ASD
spectroradiometer taken at nadir 1 m
above the vegetation canopy using a 3 m
optical fiber cable.




Remote sensing of AG+BG biomass:
spectral information

Published N Indices

Hyperion: 30m 200 bands

FDS743,1316 [25]
ND.g3,503 [66]
SRgos,710 [77]
SRso0,680 [51]
SR700,550 [78]
SRg10,560 [79]
REP [80]

NDNI [36]

We tested multiple published indices and new indices to determine which
were most related to leaf N concentration in our experimental plots.

The simulated Hyperion bands covered the ranges 422-1300 nm, 1443-
1795 nm, and 1998- 2400 nm.

Indices are normalized differences (ND) or simple ratios (SR) of bands, or
combinations of first derivatives of bands.



Remote sensing of AG+BGQG
belowground biomass: Analysis

Simple pairwise correlations to calculate the correlation between all
indices (published and new) and response variables.

Model: spectral indices => biomass

1. Spectral Indices => AG biomass

2. Spectral Indices => BG biomass

3. Spectral Indices => root:shoot ratio

4.  Spectral Indices => Leaf N

Calculated R? and compared the bands selected in these high R?
indices against known N absorption bands to evaluate the physical
basis for index selection.



Results: AB+BG biomass measures

* Whole plant biomass (belowground+aboveground)
was similar between treatments, but aboveground
biomass was 71% greater in the N-addition than in
the control treatment.

» Belowground biomass was 36% greater in the
control than in the N-addition treatment.
— This resulted in a root:shoot ratio 74% greater in the
control than in the N-addition treatment.
« Further, leaf N concentration was 18% and leaf N (g)

was 77% greater in the N-addition treatment than in
the control.

« Leaf N concentration had a significant negative
relationship with root:shoot ratio in S. acutus.

Experiment: Environmental N changes plant
morphology



Experiment: Environmental N changes plant
morphology

15
|

o R*= 049

15

10
|

o]

BNPP:ANPP ratio
BNPP:ANPP ratio
10

.0

-

o .
T T — T T
12 14 16 1.8 20

Control Nitrogen
Percent leaf N

Treatment

With more nitrogen, a plant will allocate material to leaves, rather than roots;
with less nitrogen, a plant will allocate material to roots, rather than leaves.
The ratio of “roots to shoots” (or Below/Above) is inversely related to the

concentration of total leaf nitrogen.



Spectral reflectance differences with N treatment

Several areas of significant
difference in spectral
reflectance curve e.g. green
peak region

Also, some indices showed
significant difference

FDN 935549 + leaf N
FDS,164 1760 + BG biomass
FDS,1g4 1780 *+ root:shoot
FDS;1g4,1780 + leaf N

Reflectance

549 nm = peak greenness
1235 nm = leaf water
1780 nm = N absorption
2184 nm = N absorption

FDS = first derivative simple ratio index;
FDN = first derivative normalized
difference index

0.15

0.10

0.05

0.00

Red edge: Leaf water, — Control
N accumulation transpiration = = - N-addition
stress [59] [59,63]

absorption

Peak [58]

greenness:
chlorophyll
vigor

[25,30,63]

N
absorption
(58]

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength (nm)

Averaged reflectance spectrum for N-addition and
control plants (N = 4 each). The shaded grey areas
represent 6 one standard error. Spectra associated
with foliar N in the literature are indicated, with
corresponding citations in brackets.



Spectral reflectance differences with N treatment

P <0.01 P=0.08 A
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|
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R*= 0'481.()
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i FDN12.35,549 derived

& from field

| spectrometer data is
negatively related to
percent leaf N and
positively related to
belowground
productivity.

Percent leaf N

Potential to infer
belowground
production through
remote sensing.
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Conclusions from Goal 2

*  We compared whole plant productivity of Schoenoplectus acutus
across a simple experimental N-addition and control treatment.

« S. acutus exhibited balanced growth hypothesis because N-
addition shifted allocation from below to aboveground growth.

* Field spectral reflectance measured ditfered between high and low
N plants.

* Particular differences were at 550 nm (peak greenness), 1250 nm
(corresponding to leaf water content), 1750 nm and 2100 nm (both
corresponding to spectral N absorption features).

« These findings suggested N-driven biomass allocation might be
important for estimating belowground biomass within S. acutus
marshes.

However extension to a field setting remains to be demonstrated.

O’'Connell, J.L., K.B. Byrd, M. Kelly. 2014. Remotely-sensed indicators of N-related biomass allocation in
Schoenoplectus acutus. PLOS One. 9(3):e90870



Overall Conclusions

Both narrowband and broadband data can predict
aboveground plant biomass;

Some leaf-level measurements can be linked to
belowground productivity;

There are remote sensing indices that correspond to
foliar N and root:shoot ratios:

We have a chance at scaling-up this relationship to
estimate total productivity of wetland plants using
remote sensing (with some uncertainty).

Next Steps

Applying our approach in a field setting will require
overcoming additional challenges: complications from
hydrology related parameters such as water depth,
dissolved oxygen and nitrogen; differing responses across

species, etc.



Acknowledgments

« Kristin Byrd, USGS

« Jessica O'Connell, U.C. Berkeley

* Lisamarie Windham-Myers, USGS NRP

 Lisa Schile, U.C. Berkeley

« Stefania Di Tommasso, U.C. Berkeley

* Prasad Thenkabail, USGS Western Geographic Science Center
* Robin Miller, USGS CA Water Science Center

* Frank Anderson, USGS CA Water Science Center

« Brian Bergamaschi, USGS CA Water Science Center

* Roger Fujii, USGS CA Water Science Center

« USGS Geosciences and Environmental Change for loan of the
ASD field spectrometer

Program in Earth Sciences grant, the USGS Western

@/ This project is funded by a NASA ROSES New Investigator
Geographic Science Center, USGS GAM and LRS programs.




Some useful links:

http://science.kged.org/quest/delta-map/ -
great information on the delta

nttp://www.stei.org/ - San Francisco Estuary
nstitute

nttp://git.berkeley.edu - the geospatial
innovation facility (GIF)

http://cal-adapt.org - understanding climate
change

http://kellylab.berkeley.edu - my lab website







