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The Carbon Pump: plant growth, especially roots and rhizomes, 
drive carbon sequestration. 
 

A Growing Need: to quantify above and belowground carbon 
productivity rates over large areas in the San Francisco Bay-Delta 
region  
 
Research question: Can we make remotely sensed estimates of 
wetland plant productivity: aboveground and belowground. 
 
 

This project is funded by a NASA ROSES New Investigator Program in Earth 
Sciences to Kristin Byrd, USGS 
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The Sacramento-San Joaquin Delta is at the heart of 
California’s water supply. This inland delta, where two 
major rivers converge and mingle with San Francisco Bay 
tides, has been re-engineered and re-plumbed over the 
last 160 years to meet the needs of a growing state. 

Sacramento-San Joaquin Delta  

William Bowen 



Historically, the Delta was 
an extensive freshwater 
marsh with numerous 
rivers, sloughs and 
lakes… 
(The Bay Institute, 2003) 

Original artwork by Laura Cunningham, 
2010 



The Delta today… 
The Delta is very different than it 
was 160 years ago: it is lower-
lying, with less water flowing 
through and over it’s 
landscapes; it contains far fewer 
wetlands than before yet it 
supports more people; and it is 
more disputed and argued over.  

A patchwork of islands of 
different land uses - agriculture, 
wetlands, urban – held together 
by levees which support a 
network of rivers and sloughs 
that convey Sierra water to the 
rest of the state.  

It is a place of great serenity, 
and great challenges. 



The importance of Deltas: Blue Carbon 

Freshwater marshes, where emergent plant growth leads to peat 
formation, are found in some of the most significant coastal areas of the 
the world, in the United States these sites include South Florida, the 
Mississippi River Delta, and the Sacramento-San Joaquin River Delta.  
The carbon stocks and  future cumulative carbon storage of these marshes 
are referred to as Blue Carbon, and play an  important role in managing 
atmospheric carbon (Pendleton et al. 2012) 



Wetlands were once an important part of the Delta ecosystem… 

What benefits might their restoration convey on today’s 
Delta system? 



Annual CO2, CH4 and GHG budgets in tons/acre 
CO2-equivalence (May 1st 2012– Apr 30th 2013) 

From Dennis Baldocchi and Laurie Koteen!



The USGS Carbon Capture Wetland Farm site on Twitchell Island 

Impounded and flooded in 1997 
Objective – to reverse land subsidence 
and study the effect of water depth on 
carbon storage potential in re-
established wetlands. 

Proto-peat: Photo by Robin Miller 

Twitchell Island 

Slide credit: Kristin Byrd 



USGS Wetland Farm 
Demonstration Project 
1997- Present 
 
2 3ha wetlands: 
•  Continuously flooded 
•  Non-tidal system 
•  Water is managed 
 
Project Chief: Roger Fugii 
Lead Scientist: Robin Miller 
 
Measurements include:  
•  Land –surface elevation change and 

sediment accretion 
•  Plant biomass production 
•  Decomposition of organic matter 
•  Gaseous CO2 and CH4 fluxes 
•  Environmental factors (e.g. pH, 

temperature, dissolved oxygen, etc) 



http://ca.water.usgs.gov/Carbon_Farm/ 

Wetland as Carbon Farm: Increased peat 
growth through time 

Results:  
•  Peat accretion = ~5cm a year in emergent marsh (Miller et al. 2008) 
•  Peat growth and yield ~1 kg C per m2 per year (Miller and Fujii 2009) 
•  Net carbon offset = ~30M Tons CO2 per acre per year (Miller 2011) 

Slide credit: Kristin Byrd 



Fall 2013! ESPM 233: GIS & Environmental Management! Maggi Kelly!

Imagery sources: NASA Earth Observatory!

Remote Sensing!



History of Earth 
Observation 
July 23, 1972 Landsat 1 was launched. We had our first earth-watching, civilian 
science satellite. The instruments aboard recorded information in four spectral 
bands: red, green, and two infrared. 
Remote sensing continued through the decades to follow, making modern earth 
system science, landscape ecology, and many other fields possible.  
http://earthobservatory.nasa.gov/ 

This photograph of the southwestern United 
States, taken in November 1966 during the 
Gemini XII mission, was among those that 
inspired the Landsat program. 



Remote Sensing 
Platforms 
There are numerous ways 
to get remotely sensed 
data:  
spaceborne, airborne and 
ground-based platforms 



The spectral reflectance curve 
Everything reflects, absorbs and transmits light energy differently, and 
differently across the spectrum  



Hardstem bulrush  
(Schoenoplectus acutus) 

Cattail  
(Typha spp.)  

Photographs © Eric Hunt 



Typical wetland plant reflectance curves 

Average mid-summer reflectance spectra for Typha spp. and Schoenoplectus acutus 
(n=10 for each species). 
 



Broad spatial coverage 
Monitoring and repeated measurements 
Imagery from inaccessible or remote locations 
Information about reflectance outside of the visible range of the EM spectrum 

Pixel, Digital Number (DN) 

What your computer sees… 

Remotely sensing allows for: 

What the world looks like… 
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Mapping and 
Management 

•  A very high percentage (up to 
87% recorded in one survey) of 
natural resource managers use 
one or many types of 
geospatial technologies to 
collect, visualize, integrate or 
interpret their information 
about natural resources.  

•  There are many things to 
consider with geospatial 
technology: choice of satellite 
sensor data, cost, labor 
required for processing as well 
as the level of error associated 
with its use.  

Selvarajan et al. 2009 



Research questions:  
1. Can we estimate aboveground (AG) biomass with remote 
sensing?  
2. Can remotely sensed estimates of AG plant productivity 
be linked to belowground (BG) biomass and productivity of 
emergent marsh vegetation? 



Background information for this talk 
•  Byrd, K.B., J.L. O’Connell, S. Di Tommaso, and M. 

Kelly. Evaluation of sensor types and environmental 
controls on mapping biomass of coastal marsh. 
Accepted in Remote Sensing of Environment. 

–  This work looked at optimal spectral features in situ and with 
satellite reflectance data to develop predictive models of 
aboveground biomass for common emergent freshwater marsh 
species, Typha spp. and Schoenoplectus acutus 

•  O’Connell, J.L., K.B. Byrd, M. Kelly. 2014. Remotely-
sensed indicators of N-related biomass allocation in 
Schoenoplectus acutus. PLOS One. 9(3):e90870 

–  This work demonstrated that nutrient availability caused 
differences in foliar N and biomass allocation for 
Schoenoplectus acutus under a simple N-addition experiment  



Study sites in the Delta: Mayberry Farms, Sherman Is. and Twitchell Is. 
Historically part of extensive freshwater perennial peat marshes of Delta. Drained and 
cultivated with row crops beginning in the mid-1800’s, resulting in subsidence of deep 
peat soils to below sea level. They have been restored to freshwater wetland 
impoundments. 
Mayberry: 38 ha, impounded 1990, but vegetation established 2010 
Twitchell: 6ha, impounded and flooded in 1997 

Study sites in the delta:  
Mayberry Farms on Sherman Island, and Twitchell Island  
 



Goal 1: Aboveground plant biomass 
Aboveground plant biomass is an important input 
parameter to models that forecast how coastal marsh 
elevations will respond to sea level rise, and it can be used 
to estimate belowground biomass and root:shoot ratios. 
What can we predict with remote sensing? 
 

Byrd, K.B., J.L. O’Connell, S. Di Tommaso, and M. Kelly. Evaluation of sensor types 
and environmental controls on mapping biomass of coastal marsh. Accepted in 
Remote Sensing of Environment. 



Optical remote sensing of 
the biomass of emergent 
marsh vegetation has its 
origins starting in the 1980s, 
primarily in Spartina 
alterniflora-dominated 
marshes in the eastern 
United States, where it was 
established that biomass can 
be modeled with vegetation 
indices such as the 
normalized difference 
vegetation index (NDVI) 
calculated from hand-held 
radiometer reflectance data 
(e.g. Hardisky, Klemas, Gross, 
Jensen). 



Our wetland landscape 



Main Questions: Goal 1 
1.  How well can hyperspectral and multispectral bands derived 

from field spectrometer data predict aboveground 
biomass, especially at high biomass values, of two common 
emergent plant species?  

2.  How does water inundation influence biomass prediction 
accuracy and error?  

3.  Can species-specific biomass models perform better than 
mixed-species models?  

4.  What are the associated uncertainties of the predictive 
statistical models for biomass and biomass maps produced 
with Hyperion, Landsat 7 and WV-2 satellite imagery?  



Remote sensing of AG biomass: Field 
data 

Measurement of plant biophysical characteristics (% 
cover, plant height, water depth) at 1m2 quadrats, plus 
sampled detailed biomass from allometry at 0.1m2 sites. 
Reflectance data with ASD field spectrometer were 
taken at nadir above the canopy at a consistent height of 
4 m from ground level using a 3-m optical fiber cable, 
producing a field of view of 1.8 m. 
 n = 539 sites, over 
2011-2012  



Field Measured AG Biomass 
Measured at 540 plots over the two sites.  
•  Average biomass 987.5 g/m2 
•  Ranged from 0 to 5233.8 g/m2 
Site:  
•  Sherman Island: 1,834.1 g/m2 

•  Twitchell Island site 790.4 g/m2  
Seasons:  
•  May: 617.7 g/m2  
•  July: 1,423.9 g/m2 (maximum values were found in 

August) 
•  September: 1,014.5 g/m2  
Species:  
•  Typha spp. plots higher in biomass, with mean biomass 

of 1,138.5 g/m2 compared to 770.6 g/m2 for S. acutus.  
Water: 
•  The low water plots (<15 cm water depth) averaged 

1,037.3 g/m2 and represented 46% of the total samples. 
The majority (58%) of the low water plots were pure 
Typha spp. plots.  



We used simulated bands and actual data from:  
1.  Hyperspectral, moderate spatial resolution Hyperion sensor 
2.  Multispectral, high spatial resolution Digital Globe World View-2 sensor 
3.  Multispectral, moderate spatial resolution Landsat 7 sensor 
to scale up the best statistical models and produce maps of aboveground 
biomass over a range of spatial, temporal and spectral resolutions.  

Remote sensing of AG biomass: 
spectral information 

WordView-2: 1.8m, 8 bands 

Landsat: 30m, 7 bands 

Hyperion: 30m 200 bands 



We used partial least squares regression (PLS), a multivariate analysis for 
selecting optimal spectral features.  
PLS is similar to a PCA, in that it uses eigenvector-based techniques to reduce 
many multicolinear predictors, such as spectral data, to independent 
components that maximize correlation among predictors and a single response 
variable. 
 
Instead of selecting a few spectral bands as predictors PLS extracts the most 
useful information from all available measured spectra into non-correlated 
components to help explain response variable, live green aboveground 
biomass. 
Model: measured spectra => AG biomass 
 
1.  Simulated spectra from 3 sensors => AG biomass 
2.  Simulated spectra from 3 sensors, water depth => AG biomass 
3.  Simulated spectra from 3 sensors, pure species => AG biomass 
4.  Remote sensing imagery => AG biomass 
 
For all models, we use 20% to perform cross-fold validation, and report 
variance (R2), the RMSE (actual vs. predicted biomass measurements) of the 
validation dataset and the 95% confidence intervals of RMSE. 

Remote sensing of AG biomass: Analysis 
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Remote sensing of AG biomass: Analysis 



We used partial least squares regression (PLS), a multivariate analysis for 
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Remote sensing of AG biomass: Analysis 
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PLS results: Simulated imagery > Water level 

All	  plots	   Hyperion	   Landsat	  7	   Worldview2	  

#	  PLS	  components	   7	   1	   3	  

R2	   0.46	   0.40	   0.39	  

RMSE	   560.9	   570.3	   573.5	  

%RMSE	   15.7%	   16.0%	   16.1%	  

Low	  water	   Hyperion	   Landsat	  7	   Worldview2	  

#	  PLS	  components	   1	   1	   3	  

R2	   0.57	   0.60	   0.61	  

RMSE	   533.7	   518.6	   469.2	  

%RMSE	   16.0%	   15.5%	   14.1%	  

RMSE = root mean square error of predictions from test dataset in g/m2 
%RMSE = percent normalized RMSE [RMSE/(xmax-xmin)*100]  
 

Predicting AG biomass with simulated Hyperion, Landsat, Worldview-2 bands + field 
spectrometer reflectance data.  



S.	  acutus	   All	  plots	   May-‐June	   Jul-‐Aug	   Sept-‐Oct	  

#	  components	   3	   1	   1	   1	  

R2	   0.25	   0.36	   0.02	   0.06	  

RMSE	   435.5	   255.8	   453.4	   609.1	  

%RMSE	   24.9%	   26.6%	   30.0%	   34.3%	  

Typha	  spp.	   All	  plots	   May-‐June	   Jul-‐Aug	   Sept-‐Oct	  

#	  components	   1	   1	   3	   5	  

R2	   0.5	   0.30	   0.49	   0.71	  

RMSE	   601.3	   252.5	   724.6	   526.5	  

%RMSE	   28.5	   24.0%	   23.1%	   21.0%	  

PLS results: simulated imagery > species 

RMSE = root mean square error of predictions from test dataset in g/m2 
%RMSE = percent normalized RMSE [RMSE/(xmax-xmin)*100]  
 

Predicting AG biomass with simulated Hyperion bands + field spectrometer reflectance data.  
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reflectance data.  
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Plots of predicted to observed biomass in 
based on PLSR of aboveground biomass 
with simulated Hyperion, Landsat 7 and 
World View-2 bands derived from field 
spectrometer reflectance data.  
 



PLS Results: Imagery 

All	  plots	   Hyperion	   Landsat	  7	   Worldview2	  

#	  components	   1	   1	   2	  

R2	   0.27	   0.56	   0.45	  	  

RMSE	  (g/m2)	   620.9	   556.5	   659.7	  	  

%RMSE	   33.5	   20.9	   21.5	  

RMSE = root mean square error of predictions from test dataset in g/m2 
%RMSE = percent normalized RMSE [RMSE/(xmax-xmin)*100]  
 

Predicting AG biomass with Hyperion, Landsat, Worldview-2 bands 



PLS Results: Imagery 
Predicting AG biomass with Hyperion, Landsat, Worldview-2 bands 

Plots of predicted to observed 
biomass based on PLSR of 
aboveground biomass with 

reflectance data from Hyperion, 
Landsat 7 and World View-2 satellite 
images. 



Duckweed 
(Lemna sp.) 

Vegetation Type Map: Spectral unmixing 
Vegetation map, July 2011, Digital Globe World View-2 1.8 meter satellite image  
(Stefania Di Tommaso; Lisa Schile, U.C. Berkeley) 



Mapping predicted above-ground 
biomass 

Sherman Island 
Measured biomass, 8/15/12: 2,303 g/m2     
Hyperion: 1,103 g/m2  
Landsat 7: 1,977 g/m2  
World View-2: 3,004 g/m2  
 



Mapping predicted above-ground 
biomass 

Twitchell Island  
 
Measured biomass, 9/7/12:  1,357 g/m2 
Hyperion: 1,419 g/m2 
Landsat 7: 1,141 g/m2 
World View-2:  1,274 g/m2  



Conclusions from Goal 1  
We modeled biomass of emergent vegetation with field spectrometer 
and satellite (multispectral and hyperspectral) data.  
1.  PLS helps deal with multiple colinear features; shortwave infrared 

bands and multi-temporal datasets improved biomass prediction.  
2.  Water inundation interacting with plant structure controlled 

biomass model accuracy.  
3.  Typha spp. models predicted biomass better than S. acutus 

models, but the pooled dataset was best.  
4.  Use of narrowbands did not significantly improve biomass 

predictions over broadbands.  
5.  Large RMSE reflects water effects, variation in species mix, thatch 

cover and floating aquatic vegetation across samples, scaling the 
biomass measurements. 

Maps might help track Blue Carbon, sea level rise and land use effects 
in coastal marshes.  
 

Byrd, K.B., J.L. O’Connell, S. Di Tommaso, and M. Kelly. Evaluation of sensor types and environmental 
controls on mapping biomass of coastal marsh. Accepted in Remote Sensing of Environment. 



Goal 2: Belowground plant biomass 
Belowground biomass is a large component of overall 
carbon. Can we infer and measure plant belowground 
biomass and productivity through root:shoot ratios and 
root production? Can we then link with remote sensing 
estimates of aboveground plants? 

 

O’Connell, J.L., K.B. Byrd, M. Kelly. 2014. Remotely-sensed indicators of 
N-related biomass allocation in Schoenoplectus acutus. PLOS One. 
9(3):e90870 



Main Questions: Goal 2 

1.  Can percent total N concentration in leaves be used to 
estimate belowground biomass?  

2.  Do remotely-sensed vegetation indices indicate 
belowground plant response to eutrophic conditions?  

Relationships between leaf N and belowground biomass might 
assist estimation of spatial variation of root:shoot ratios, 
supporting regional carbon monitoring efforts.  



Belowground productivity: importance 
within coastal freshwater marsh  

•  Plant belowground net primary productivity 
(BNPP): 
–  Accretes soil to increase marsh elevation 
–  Alleviates flooding as sea level rises 
–  Peat and soil organic carbon 



Measuring BG biomass can be 
difficult 

Belowground NPP scales 
with aboveground NPP, but 
fluctuates with:  

Light, competition, 
temperature, phylogeny and 
nutrients 

Two hypotheses on nutrient 
use: 

Balanced growth hypothesis 
(Shipley & Meziane 2002) 
Isometric growth 



Belowground biomass hypotheses 
•  Balanced-growth hypothesis (optimal partitioning 

theory): 
–  all else being equal, plants allocate growth towards the 

most limiting resource à towards shoots when light is 
limited, or towards roots when nutrients or water are 
limited.  

•  Isometric allocation model: 
–  above and belowground biomass scale equivalently 

across multiple environmental conditions 

•  In both situations, leaf N concentration can inform 
belowground biomass estimates.  
–  In the balanced growth case, additional nutrients, such 

as N, increase shoot growth but do not increase 
belowground biomass equally, therefore leaf N scales 
with root:shoot ratios.  

–  Plants responding isometrically to nutrient addition will 
have stimulated below and aboveground biomass and 
constant root:shoot ratios.  



Plant growth chambers at Mayberry Slough: 
randomly assigned to control or N-addition 
treatments which were physically separated, 
but hydrologically similar.  
•  Added nitrogen to half of the root cores, 

and measured root and leaf growth; 
•  Measure leaf nitrogen; 
•  Measured spectral reflectance of plants. 
 

Remote sensing of AG+BG biomass: 
field data 

Field 
samples 

Ingrowth root 
cores plots 

Mayberry Slough 
Wetland 



Measuring AB+BG biomass 

After harvest in October 
2012, plants were sorted 
into aboveground biomass 
(stems, leaves and 
inflorescences) and 
belowground biomass (roots 
and rhizomes).  
 
All plant biomass was oven 
dried at 40°C until all plant 
tissue water was removed.  
 
We defined root:shoot ratio 
as the ratio of all harvested 
belowground and 
aboveground biomass. 
 



Canopy reflectance spectra (350 – 2500 
nm)  were obtained over each plot near 
midday on 25 September 2012 (6 days 
before plant harvest) with ASD 
spectroradiometer taken at nadir 1 m 
above the vegetation canopy using a 3 m 
optical fiber cable. 
 

Remote sensing of AG+BG biomass: 
spectral data 



We tested multiple published indices and new indices to determine which 
were most related to leaf N concentration in our experimental plots.  
The simulated Hyperion bands covered the ranges 422–1300 nm, 1443–
1795 nm, and 1998– 2400 nm.  
Indices are normalized differences (ND) or simple ratios (SR) of bands, or 
combinations of first derivatives of bands. 

Remote sensing of AG+BG biomass: 
spectral information 

Hyperion: 30m 200 bands 



Simple pairwise correlations to calculate the correlation between all 
indices (published and new) and response variables.  

Model: spectral indices => biomass 
1.  Spectral Indices => AG biomass 
2.  Spectral Indices => BG biomass 
3.  Spectral Indices => root:shoot ratio 
4.  Spectral Indices => Leaf N 

 
 
Calculated R2 and compared the bands selected in these high R2 
indices against known N absorption bands to evaluate the physical 
basis for index selection. 

Remote sensing of AG+BG 
belowground biomass: Analysis 



Results: AB+BG biomass measures 

•  Whole plant biomass (belowground+aboveground) 
was similar between treatments, but aboveground 
biomass was 71% greater in the N-addition than in 
the control treatment. 

•  Belowground biomass was 36% greater in the 
control than in the N-addition treatment.  
–  This resulted in a root:shoot ratio 74% greater in the 

control than in the N-addition treatment. 
•  Further, leaf N concentration was 18% and leaf N (g) 

was 77% greater in the N-addition treatment than in 
the control. 

•  Leaf N concentration had a significant negative 
relationship with root:shoot ratio in S. acutus.  

 
Experiment: Environmental N changes plant 
morphology 



With more nitrogen, a plant will allocate material to leaves, rather than roots; 
with less nitrogen, a plant will allocate material to roots, rather than leaves. 
The ratio of “roots to shoots” (or Below/Above) is inversely related to the 
concentration of total leaf nitrogen.  

Experiment: Environmental N changes plant 
morphology 



Several areas of significant 
difference in spectral 
reflectance curve e.g. green 
peak region 
 
Also, some indices showed 
significant difference 
•  FDN1235,549 + leaf N 

•  FDS2184,1780 + BG biomass 
•  FDS2184,1780 + root:shoot 
•  FDS2184,1780 + leaf N 
 
549 nm = peak greenness 
1235 nm = leaf water 
1780 nm = N absorption 
2184 nm = N absorption 
FDS = first derivative simple ratio index; 
FDN = first derivative normalized 
difference index  

 

Averaged reflectance spectrum for N-addition and 
control plants (N = 4 each). The shaded grey areas 
represent 6 one standard error. Spectra associated 
with foliar N in the literature are indicated, with 
corresponding citations in brackets.  

Spectral reflectance differences with N treatment 



FDN1235,549 derived 
from field 
spectrometer data is 
negatively related to 
percent leaf N and 
positively related to 
belowground 
productivity. 
 
Potential to infer 
belowground 
production through 
remote sensing. 

Spectral reflectance differences with N treatment 

P < 0.01 P = 0.08 



Conclusions from Goal 2 
•  We compared whole plant productivity of Schoenoplectus acutus 

across a simple experimental N-addition and control treatment.  
•  S. acutus exhibited balanced growth hypothesis because N-

addition shifted allocation from below to aboveground growth.  
•  Field spectral reflectance measured differed between high and low 

N plants.  
•  Particular differences were at 550 nm (peak greenness), 1250 nm 

(corresponding to leaf water content), 1750 nm and 2100 nm (both 
corresponding to spectral N absorption features).  

•  These findings suggested N-driven biomass allocation might be 
important for estimating belowground biomass within S. acutus 
marshes.  

However extension to a field setting remains to be demonstrated.  

O’Connell, J.L., K.B. Byrd, M. Kelly. 2014. Remotely-sensed indicators of N-related biomass allocation in 
Schoenoplectus acutus. PLOS One. 9(3):e90870 



Overall Conclusions 
1.  Both narrowband and broadband data can predict 

aboveground plant biomass; 

2.  Some leaf-level measurements can be linked to 
belowground productivity; 

3.  There are remote sensing indices that correspond to 
foliar N and root:shoot ratios; 

4.  We have a chance at scaling-up this relationship to 
estimate total productivity of wetland plants using 
remote sensing (with some uncertainty). 

Applying our approach in a field setting will require 
overcoming additional challenges: complications from  
hydrology related parameters such as water depth, 
dissolved oxygen and nitrogen; differing responses across 
species, etc. 

 

Next Steps 
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Some useful links: 

•  http://science.kqed.org/quest/delta-map/ - 
great information on the delta 

•  http://www.sfei.org/ - San Francisco Estuary 
Institute 

•  http://gif.berkeley.edu - the geospatial 
innovation facility (GIF) 

•  http://cal-adapt.org - understanding climate 
change 

•  http://kellylab.berkeley.edu - my lab website 



Thanks! 


