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Q’(t) = Q(t) - <Q>

C’(t) = C(t) - <C>
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Getting dispersion from measured time series



To Calculate Transport:
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“tidal pumping”
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(advection)

To Calculate Transport:

Water mass flux 
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To Measure Flux

Accoustic Doppler 
Current Profiler

Submersible fluormeters



THREEMILE
SLOUGH

San 
Francisco 
Bay

Courtesy J. Burau

Tidal dispersion for 
a conservative
constituent



Tidal dispersion can control flux direction

Courtesy J. Burau, Cathy Ruhl, USGS WSC; Lucas et al. 2006
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What about reactive scalars?
(e.g. phytoplankton)

(this is where it gets fun)



Mildred 
Island

“Phytoplankton production in Mildred 
Island is exported through tidal 

dispersion and supports zooplankton 
production in unproductive adjacent 

habitats” (Lopez et al., 2006).

http://soundwaves.usgs.gov/2012/



How did this 
phytoplankton 
export 
happen?

Google Earth



Northern Mildred Island (Lopez et al 2006)

Flow

Chl a

Disp. flux

Google Earth



Dispersive phytoplankton flux had a 
fortnightly periodicity 

Lucas et al. (2006)

80

Spring-Neap ??

Tidally averaged dispersive chlorophyll flux

~2 wks ~2 wks

large flux out

Spring / Neap ??



Big flux events happened when ebb 
occurred late in photoperiod

large flux out

ebb late in photoperiod

Lucas et al. (2006)



EBB Max outward flux occurred 
when ebb tides coincided with 

daily phytoplankton peak

Lucas et al. 2006

• southern phyto source 
was diurnal (peak every 24 
h)
• southern phyto was 
transported northward 
during ebbs (every 12.4 h)
• 15d elapses btwn identical 
successive phases
• looked “spring-neap”



This “Pumping” matters ecologically

Phytoplankton produced in Mildred Island supported 
the production of zooplankton (baby-fish food) in 
adjacent less productive channels

High phyto 
productivity

Low phyto 
productivity

High
consumption
by 
zooplankton 
in channels

Lopez et al. 
Ecosystems 2006
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Dispersive flux can be 
described as:

dispersion
coefficient

concentration
gradient

Martin et al. 2007
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Local growth & loss modulate 
the gradient
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Local growth & loss modulate 
the gradient

Dispersive flux

Influence of 
grazing

*http://wwx.inhs.illinois.edu/collections/mollusk/
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Local growth & loss modulate 
the gradient

Dispersive flux

Influence of 
grazing

*http://wwx.inhs.illinois.edu/collections/mollusk/

*



Fine spatial details:
Habitat geometry



Hydro-Temp-Bio
Model

Model domain 
& bathymetry 
grid

I
N
T
E
R
I
O
R

EXTERIOR
CHANNELS

Baek 2006; Lucas et al. In prep.

-CALFED-supported
-TRIM3D (Casulli, Gross)
-25m x 25m x 0.5m grid
-Baek (w/Stacey):

-Application to Mildred 
Island
-Incorporation of 
atmospheric forcing & 
temperature dynamics

-Phytoplankton model:
-Light-limited
-Assumes nutrient-replete
-Benthic & pelagic grazing

Seungjin Baek Mark Stacey



Sensitivity to levee breach 
configuration

Base Case:
Represented by 
25 m (1 cell) 
wide opening, 8’ 
deep

What if the 
opening is 
twice as 
deep?

Aerial Photography: ©Herb Lingl/aerialarchives.com
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A: Wind is critically important for flushing
out coves (Baek 2006)

Base No Wind

Max = 11 Max = 32

Q: Why does no-wind result in significantly 
more biomass?

ug chl a/L

Preliminary results; Lucas et al., in prep.



Q: Why did productivity 
increase so much more than 
biomass?



Q: Why did productivity 
increase so much more than 
biomass?

A: Great question!  Ask me 
later!



Transport time scales
integrate and encapsulate • many flavors

Monsen et al. 2002; Lucas 2010; http://tvindy.typepad.com/photos/old_pics/spumoni.html



“Slower is Greener”
(a longer transport time will lead to increased 

phytoplankton biomass & productivity)

slower faster

A Common Conceptual Model

Lucas & Thompson 2012



“Slower is Greener”

slower faster

A Common Conceptual Model



Simple Mathematical Model

Major assumptions:

1. Phytoplankton growth rate 
() is purely light-limited (no 
nutrient effects)

2. Vertically well-mixed water 
column

* http://wwx.inhs.illinois.edu/collections/mollusk/Lucas & Thompson 2012

*



Is SLOWER always greener ? 

Clam
grazing
Rate, 
BG [m/d]

Habitat depth = 3 m, June Delta conditions

SLOWER
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ER

growth >grazing

(Lucas & Thompson  2012)
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Clam
grazing
Rate, 
BG [m/d]

Water column height = 3 m, June Delta conditions

SLOWER
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growth >grazing

grazing >growth

(Lucas & Thompson  2012)
* http://wwx.inhs.illinois.edu/collections/mollusk/
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Is SLOWER always greener ?  NO !!!

SLOWER
G

R
EE

N
ER

Clam
grazing
Rate, 
BG [m/d]

1. Transport time is a 
double-edged sword. 

2. Longer transport times 
can result in higher or 
lower phyto. biomass, 
depending on growth-
loss balance (e.g. clam 
presence/absence).

3. Slower water has 
broader range of 
possibilities than faster 
habitat (uncertainty).

(Lucas & Thompson  2012; Lucas et al. 2009)
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Phytoplankton Effective
Growth Rate, eff (1/d) = growth - grazing

eff Magnitude
0.0
1.0
2.0
3.0

Is the full 
range of 
theoretical 
behavior
relevant to 
the Delta?

YES !!!

(based on measurements 
of benthic biomass, 
turbidity & irradiance,
Spring-Summer 2001-
2003)

eff ≈ 0

growth-dominated

loss-dominated

growth = loss

eff < 0

eff > 0(Lucas & Thompson  2012)



Q: Is there evidence of this 
dual role for transport time 
in the Bay?



Jassby 2008: 
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Summary: Hydrodynamic influences 
on phytoplankton

• Details dominate, biology modulates
• hourly scale physical-biological interactions
• geometry
• concentration gradients between habitats
• balance between growth & loss
• stratification (sorry, no time, but it can be important when 

it happens!)

• Continuous change, over a range of scales
• invasions
• climatehydrology, heating, stratification, ...
• restoration/management
• invasions



What do we do with all this?
• Long-term view

• acknowledge change
• Adaptive restoration

• monitor how it works (minutesyears)
• monitor how it’s changing (and its neighbors)
• expect to adjust the adjustable

• Reduce uncertainty
• Research on bivalves

• Coupled models+measurements
• actively guide, design, refine
• use models to look into future
• use measurements to witness actual changes, 

continually & iteratively improve models
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