Hydrodynamic
influences on
phytoplankton in
the San Francisco
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Scalar FLUX in tidal systems

To Calculate Transport:
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Water mass flux Concentration
(discharge) (e.g. specific conductivity)

< > = tidal average

" = tidal fluctuation

Courtesy J. Burau
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Getting dispersion from measured time series

Q-C
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To Calculate Transport:
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To Measure Flux

Submersible fluorme
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Tidal dispersion for
a conservative THREEMILE
constituent SLOUGH
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Tidal dispersion can control flux direction

Three Mile Slough near San Joaquin River
40,000 3 Y Sacramento
' ’ River
Discharge 0 I
(cfs) tidal fluctuation
Vvuvvy San Joaqui
-40,000 River

Courtesy J. Burau, Cathy Ruhl, USGS WSC; Lucas et al. 2006




Tidal dispersion can control flux direction

Three Mile Slough near San Joaquin River
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Tidal dispersion can control flux direction
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Tidal dispersion can control flux djrection
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What about reactive scalars?
(e.q9. phytoplankton)

(this is where it gets fun)




Francisco

“Phytoplankton production in Mlldred
Island is exported through tidal
dispersion and supports zooplankton
production in unproductive adjacent
habitats” (Lopez et al., 2006).

0 20 VI 1' rpr

-......-,._-’Li r—.-'-r-!d' il

http: //soundwaves usgs gov/2012/




How did this
phytoplankton
export
happen?
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Northern Mildred Island (Lopez et al 2006
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Dispersive phytoplankton flux had a
fortnightly periodicity

Tidally averaged dispersive chlorophyll flux

~2 WKsS ~2 Wks
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Big flux events happened when ebb
occurred late in photoperiod
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* southern phyto source
was diurnal (peak every 24
h)

 southern phyto was

transported northward
during ebbs (every 12.4 h)

» 15d elapses btwn identical
successive phases

* looked “spring-neap”

Max outward flux occurred
when ebb tides coincided with
daily phytoplankton peak
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Southern

MNorthern

Lucas et al. 2006

" pooy qqge




This “Pumping” matters ecologically

LOV(\; phytO - =2 ) High
productivity @@ consumption

by
zooplankton
In channels

High phyto

Lopez et al. productivity

Ecosystems 2006

Phytoplankton produced in Mildred Island supported
the production of zooplankton (baby-fish food) in
adjacent less productive channels




This is how “connectivity” happens

* Hourly scale variations in hydrodynamics and scalar
concentrations (e.g. chl a) can govern weekly scale
fluxes (see Enright et al. 2013 for cool T example!)
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Dispersive flux can be
described as:

| _ dC
Dispersive Flux ~ —K —

dispersion
coefficient

/ d\x

concentration
gradient
Martin et al. 2007
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Local growth & loss modulate
the gradient

Dispersive flux

Influence of
bathymetry



Local growth & loss modulate
the gradient

Dispersive flux

Influence of
turbidity



Local growth & loss modulate
the gradient

Dispersive flux

Influence of
grazing

*http://wwx.inhs.illinois.edu/collections/mollusk/
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This is how “connectivity” happens
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Local growth & loss moglulate

Influence of
grazing

*http://wwx.inhs.illinois.edu/collections/mollusk/



Fine spatial details:

Habitat geometry
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Seungjin Baek Mark Stacey

-CALFED-supported
-TRIM3D (Casulli, Gross)
-25m x 25m x 0.5m grid
-Baek (w/Stacey):
-Application to Mildred
Island
-Incorporation of
atmospheric forcing &
temperature dynamics
-Phytoplankton model:
-Light-limited
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-Assumes nutrient-replete

-Benthic & pelagic grazing Baek 2006; Lucas et al. In prep.




Sensitivity to levee breach
configuration

Base Case:
Represented by
25 m (1 cell)
wide opening, 8’
deep

|

What if the
opening Is
twice as
deep?

Aerial Photography: ©Herb Lingl/aerialarchives.com




Sensitivity to
levee breach
configuration

Preliminary results;
Lucas et al., in prep.
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Sensitivity
to wind

Preliminary results;
Lucas et al., in prep.
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Q: Why does no-wind result in significantly
more biomass?

A: Wind is critically important for flushing
out coves (Baek 2006)

ug chl a/L

Preliminary results; Lucas et al., in prep.




Q: Why did productivity
Increase so much more than
biomass?




Q: Why did productivity
Increase so much more than
biomass?

A: Great question! Ask me
later!




Transport time scales
integrate and encapsulate « many flavors

-

Monsen et al. 2002; Lucas 2010; http://tvindy.typepad.com/photos/old_pics/spumoni.html




A Common Conceptual Model

“Slower I1s Greener”

(a longer transport time will lead to increased
phytoplankton biomass & productivity)

slower

Lucas & Thompson 2012




REVIEWS

Limnol. Oceanogr., 54(1), 2009, 381 360
@ 2009, by the American Sodety of Limnology and Occanography, Inc.

Why are diverse relationships observed between phytoplankton biomass and
transport time?

Lisa V. Lucas! and Janet K. Thompson
U.S. Geological Survey, 345 Middlefield Road, ™

Larry R Brown
U.S. Geological ~

ECOSPHERE

Changing restoration rules: Exotic bivalves interact with
residence time and depth to control phytoplankton productivity

Lisa V. Lucast anp Janer K. THomeson

Urnited States Geological Survey, 345 Middlefield Road, Mailstop #496, Menlo Park, California 94025 USA



Simple Mathematical Model

Major assumptions: ///ll

1. Phytoplankton growth rate

(n) Is purely light-limited (no
nutrient effects)

. Vertically well-mixed water
column

Lucas & Thompson 2012 * http://wwx.inhs.illinois.edu/collections/mollusk/




Is SLOWER always greener ?

growth >grazing
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Habitat depth = 3 m, June Delta conditions R _
* http://wwx.inhs.illinois.edu/collections/mollusk/




2) Is SLOWER always greener ?
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Is SLOWER always greener ? NO !!!

1. Transport time is a
double-edged sword.

e
—_
-2

Clam
grazing
Rate,

S Bkl 2. Longer transport times
ol - ' . can result in higher or
— ' lower phyto. biomass,
depending on growth-
loss balance (e.g. clam
presence/absence).

. Slower water has
broader range of
Transport time [d] possibilities than faster
habitat (uncertainty).

Phytoplankton biomass [ug chl/L]

(Lucas & Thompson 2012; Lucas et al. 2009)



Is the Ful/ Phytoplankton Effective

range of
theoretical
behavior
relevant to

Growth Rate, ¢ (1/d) = growth - grazing

(based on measurements o
of benthic biomass,

turbidity & irradiance,
Spring-Summer 2001-

2003) O

the Delta? @B

e Magnitude O
0.0 OO
1.0
2.0 D O
3.0 50
~
(W
Heff =0
loss-dominated . Mgt <0 O

growth-dominated . Uegr > 0

(Lucas & Thompson 2012)




@: Is there evidence of this
dual role for transport time
in the Bay?




Jassby 2008
2 different phyto-flow relationships
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Jassby 2008

2 different phyto-flow relationships
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Jassby 2008

2 different phyto-flow relationships
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Summary: Hydrodynamic influences
on phytoplankton

* Details dominate, biology modulates
hourly scale physical-biological interactions
geometry
concentration gradients between habitats
balance between growth & loss
stratification (sorry, no time, but it can be important when
It happens!)

» Continuous change, over a range of scales
Invasions
climate -2hydrology, heating, stratification, ...
restoration/management
Invasions




What do we do with all this?

* Long-term view
» acknowledge change

» Adaptive restoration

e monitor how it works (minutes—>years)

« monitor how it's changing (and its neighbors)
» expect to adjust the adjustable

* Reduce uncertainty
 Research on bivalves

* Coupled models+measurements
* actively guide, design, refine
* use models to look into future
* use measurements to witness actual changes,
continually & iteratively improve models




Jan Thompso,q National Research Program
Jon Burau & Cfé = Priority Ecosystem Science

: Toxic Substances & Hydrology
Jim Cloern
Seungjin Baek
Larry Brown
Mark Stacey
Francis Parchaso

; ience Program/
Cary Lopez CALFEDSSgience Program

Cathy Ruhl

Bill Sobczak

Tara Schraga

Anke Mueller-Solger
Marc Vayssieres

Photo courtesy F. Parchaso Interagency Ecological Program




