What are we collecting
and are we collecting the
information we need?
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What are the goals of monitoring?

Examples from RMP nutrient monitoring design:

* How do concentrations of nutrients and effects vary
spatially and temporally?

e \What are the loads from tributaries to the Delta?

 \WWhat are the sources and loads of nutrients within
the Delta?

 \Which factors in the Delta influence the effects of
nutrients?

* What are the types and sources of nutrient sinks
within the Delta?



What are the goals of monitoring?

* What is the needed accuracy of external and
internal load-monitoring assessments?

* What is the time over which loading assessments
are relevant to environmental effects? Annual,
seasonal, monthly, daily?

* What level of change needs to be detected? Over
what time period?

* To what spatial resolution do internal sources and
processes need to be resolved?
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monitoring &

Continuous, real-time, high-frequency,
flux-based, multi-parameter measurements of
ecosystem indicators and biogeochemical
processes at fixed stations

Integrated with intermittent spatial assessments



An ongoing revolution in field instrumentation,
as well as data integration, automated quality
assurance, processing and data visualization
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Why do we need continuous, flux-based, multi-
parameter multi-platform (i.e. HD) measurements?

To see — and gquantify — loads, processes and effects




Aliasing .

Sampling below the
time-scale of change
can lead to:

1) Erroneous 5
determination of
levels

2) Erroneous
determination of
changes over time

3) Missing real changes TIME



Nitrate Variability — San Joaquin River

Assessing nitrate variability in the San Joaquin River, Crows Landing, CA
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Nitrate Variability — San Joaquin River

Assessing diurnal nitrate variability in the San Joaquin River, Crows Landing, CA
(Satlantic ISUS nitrate analyzer)
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Nitrate Loads — San Joaquin River

Difference in instantaneous and cumulative
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Drivers of nitrate variability - SJR

Combination of discrete and in situ data show
high biological activity in the SJR
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RESOLVE TIDAL PROCESSES:
Example: Methylmercury export

Proxy measurements for high resolved MeHg flux from a
tidal wetland, Browns Island, CA
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Methylmercury fluxes and yields
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USGS High frequency, real-time, flux
based monitoring stations
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Sacramento River

San Joaguin River

WGA

Site Name

Decker Island

Cache Slough

Liberty Island

Walnut Grove

Sacramento River at Freeport
Liberty Cut

Deep Water Shipping Channel
Toe Drain North of Stair Steps
San Joaquin River at Vernalis

Nitrate
Chlorophyll
Phycocyanin (BGA)

Site

Abbreviation

DEC
CCH
LB
WGA
FPT
LCT
DWS
TOE
SIV

NWIS Station

Number

11455478
11455350
11455315
11447890
11447650
11455146
11455335
11455139
11303500

Dissolved organic matter (FDOM)

Dissolved oxygen
pH

LOCATION MAP OF USGS BIOGEOCHEMISTRY HF NUTRIENT MONITORING STATIONS
IN: 1) SACRAMENTO RIVER AT FREEPORT (FPT) AND WALNUT GROVE ABOVE THE
CROSS CHANNEL (WGA); 2) CACHE SLOUGH COMPLEX AT THE MOUTH OF LIBERTY
ISLAND (LIB), LIBERTY CUT CHANNEL (LCT) AND THE TOE DRAIN (TOE); 3)
SACRAMENTO DEEP WATER SHIPPING CHANNEL (DWS); AND 4), IN THE LOWER
SACRAMENTO RIVER AT DECKER ISLAND (DEC).

Turbidity
Temperature
Conductivity

Phosphate, Ammonium, Other



2014 Freeport Walnut Grove Cache Slough Liberty Island
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Flux Time Series WY 14
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GRAPHS DISPLAYING CUMULATIVE FLUXES (IN METRIC TONNES) CALCULATED FOR EACH STATION, AND ASSOCIATED CONCENTRATION

DATA MEASURED AT FREEPORT BRIDGE (FPT), WALNUT GROVE (WGA), CACHE SLOUGH (CCH), AND DECKER ISLAND (DEC) DURING WATER YEAR 2014
(10/1/2013 - 9/30/2014). FLUXES ARE SHOWN IN BLACK FOR NITROGEN (N), CHLOROPHYLL-A (CHL-A), AND DISSOLVED OXYGEN (DO).
CONCENTRATION MEASUREMENTS FOR NITROGEN (BLUE), CHLOROPHYLL-A (GREEN), AND DISSOLVED OXYGEN (ORANGE) ARE SHOWN ABOVE.



High resolution spatial assessments -
Biogeochemical mapping
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USGS 11455478: SAC RIVER
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From RT data to RT information

Continuous derivative products

* Biogeochemical rates such as nutrient
transformation and utilization rates

* Ecosystem metabolism

* Environmental stoichiometry

* VVisual perceptive distance

* DOC

e Suspended sediment concentration



Near Future —

New sensors and techniques

* Phytoplankton basic taxonomy and size
* Bromide
* Mercury, methylmercury

On the horizon —

* Real time flow model integration
* Real time BGC model integration



Random Comments -

Current in situ instrumentation is unable to reliably detect
microcystis (HAB) even at moderately high concentrations,
hindering our ability to understand the relationship between
nutrients, residence time, water temperature and HAB blooms.

We are about to embark (~¥2019) on an ecosystem—scale
experiment addressing how changes in nutrients effects
aguatic ecosystems. We should take maximum advantage of it.

There is no secure, long-term funding currently identified that
supports either (1) the flow/turbidity network, or (2) the
nutrient biogeochemistry network. Expires in 2018.

There is frustratingly limited opportunity and funding to
support data interpretation and integration across data types
and source, and there are limited efforts to harmonize data
collection efforts.
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