
Temperature	Decision	Support	for	the	Sacramento	River	
	
Background	
NOAA’s	Southwest	Fisheries	Science	Center	(SWFSC)	has	developed	a	decision	
support	tool	(DST)	for	temperature	management	on	the	Sacramento	River	below	
Keswick	Dam	related	to	winter‐run	Chinook	salmon	habitat.	This	DST	is	based	on	a	
physically‐based	water	temperature	model,	the	River	Assessment	for	Forecasting	
Temperature	(RAFT).	This	report	provides	a	description	of	the	RAFT	model,	how	it	
was	applied	in	water	management	during	the	2015	temperature	control	season,	
how	it	is	the	foundation	of	the	DST,	and	planned	improvements	to	the	DST	
scheduled	to	be	implemented	in	2016‐2017.	
	
The	RAFT	model	
The	RAFT	model	was	developed	to	address	the	need	for	real‐time	water	
temperature	forecasts	at	scales	relevant	to	winter‐run	Chinook	management	for	the	
Sacramento	River	below	Keswick	Dam	(Figure	1).	SWFSC	determined	a	suite	of	
requirements	for	the	model	which	included:	(1)	produce	accurate	and	precise	
temperature	hindcasts	and	real‐time	forecasts,	(2)	estimate	prediction	error,	(3)	
have	fine	temporal	resolution	(subhourly),	and	moderate	spatial	resolution	that	
captures	spatial	heterogeneity	in	temperature	at	the	landscape	scale	(the	full	length	
of	the	Sacramento	River).	
	
RAFT	meets	these	requirements	as	a	1‐dimensional	model	that	predicts	thermal	
impacts	of	dam	releases	on	downstream	temperatures	at	1km	spatial	resolution	and	
sub‐hourly	time	step.	RAFT	models	the	physics	of	heat	transfer	and	considers	key	
processes	that	influence	water	temperature,	including	river	hydrodynamics,	heat	
exchange	with	the	atmosphere	and	streambed,	inputs	from	tributaries,	and	losses	
from	withdrawals.	Specifically,	RAFT	accounts	for	mass	transfer	due	to	advection	
and	longitudinal	dispersion,	and	heat	exchange	at	the	air‐water	interface	due	to	
solar	radiation,	atmospheric	thermal	radiation,	evaporation,	and	conduction.	The	
magnitudes	of	these	physical	processes	are	calculated	from	gridded	meteorological	
datasets,	spatially‐explicit	bathymetric	parameters	(depth	and	velocity),	and	
flow/temperature	monitoring	networks.	After	calibration,	prediction	error	(root	
mean	squared	error)	was	on	the	order	of	0.5°C,	depending	on	the	distance	from	the	
dam.	For	details	on	the	mathematical	formulation,	calibration	and	validation	of	
RAFT,	see	Pike	et	al.,	2013.	
	
RAFT	can	be	used	in	two	modes:	hindcast	and	forecast.	The	hindcast	mode	is	used	to	
model	water	temperatures	that	occurred	in	the	past,	which	is	useful	for	
retrospective	analysis	of	thermal	habitat.	In	this	mode,	the	model	predictions	are	
merged	with	available	measurements	from	temperature	sensors	using	a	statistical	
data	assimilation	algorithm	to	make	optimal	state	estimates.		

	
The	forecast	mode	is	used	for	the	real‐time	decision	support	system.	Water		
temperature	predictions	are	generated	every	three	hours,	starting	from	the	most	
up‐to‐date	estimate	of	current	conditions,	and	extend	up	to	168	hours	(7	days)	into	
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the	future.	The	model	is	driven	by	NOAA’s	National	Weather	Service	7‐day	forecasts	
(National	Digital	Forecast	Database:	http://www.nws.noaa.gov/ndfd/).	These	
operational	forecasts	contain	all	the	necessary	meteorological	variables	for	RAFT	to	
calculate	heat	fluxes	(i.e.,	air	temperature,	wind	speed,	sky	cover,	and	relative	
humidity),	and	are	provided	at	a	spatial	resolution	of	5km	and	temporal	resolution	
of	3‐6	hours.	

	
In	addition,	RAFT	has	the	capacity	to	
evaluate	different	operations	scenarios	
based	on	different	combinations	of	
release	flows	and	temperatures.	End	
users	can	select	different	combinations	of	
flow	and	temperature	releases	and	
compare	the	subsequent	forecasts	on	
downstream	temperatures.	
	
The	resulting	simulations	accurately	
capture	the	thermal	dynamics	of	the	
river,	including	the	magnitude	and	timing	
of	diel	temperature	fluctuations	(Figure	
2)	and	seasonal	patterns	(Figure	3).	A	
retrospective	analysis	was	run	from	
1990‐2014,	allowing	for	the	detailed	
comparison	between	operations	and	
meteorological	conditions	between	
years.	The	outputs	can	be	also	be	
spatially	integrated	with	biological	data	
to	evaluate	relevant	metrics	such	as	redd	
exposure	(Figure	4).		
	
	

Use	of	RAFT	in	decision	support	
During	the	critical	temperature	control	season	2015,	RAFT	was	used	to	simulate	and	
predict	temperature	dynamics	under	a	range	of	operating	scenarios	for	Shasta	Dam.	
Potential	operating	scenarios	were	evaluated	and	compared	to	USBR	model	outputs	
(Figure	5).	
	
The	Decision	Support	Tool	
The	current	form	of	the	DST	is	a	website	(http://oceanview.pfeg.noaa.gov/raft/).	
The	concept	behind	this	site	is	that	users	are	able	to	view	the	current	discharge	
volume	and	temperature	conditions	at	Keswick	Dam	(driven	by	releases	from	
Shasta	Dam),	the	current	meteorological	forecast,	and	predicts	the	downstream	
temperatures	at	key	locations	over	the	next	72	hours.	There	is	also	management	
scenarios	tab	where	users	can	alter	the	discharge	volume	and	temperature	and	

Figure	1.	Study	area	for	the	Decision	Support	Tool.
The	Shasta	Reservoir	(blue	box)	is	modeled	with	
CE‐Qual‐W2;	the	Keswick	Reservoir	(red	box)	
model	has	yet	to	be	determined;	the	Sacramento	
River	(green	box)	is	modeled	with	RAFT.	
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observe	the	subsequent	changes	in	temperature.	The	results	of	the	current	and	
alternative	scenarios	are	available	for	download.	
	

	
Figure	2.	Daily	patterns	of	temperature	on	the	Sacramento	River	in	2014	for	two	locations,	Above	Clear	
Creek	(top	panel)	~45	km	below	Keswick	Dam,	and	Bend	Bridge	(bottom	panel)	~60	km	below	Keswick	
Dam.	Observed	temperatures	(red)	and	modeled	temperatures	(blue).	

	
Figure	3.	Seasonal	patterns	of	temperature	on	the	Sacramento	River	in	2014	as	observed	(red)	and	
predicted	by	RAFT	(blue)	for	two	locations,	Above	Clear	Creek	(top	panel)	~45	km	below	Keswick	Dam,	
and	Bend	Bridge	(bottom	panel)	~60	km	below	Keswick	Dam.	
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Improvements	to	the	DST	
Operations	above	Keswick	Dam	
	
The	current	RAFT	model	domain	is	from	the	outlet	of	Keswick	Dam	to	the	
confluence	of	the	American	River,	and	therefore	does	not	take	into	account	the	
~17km	of	the	Keswick	Reservoir	between	Shasta	and	Keswick	dams,	nor	does	it	
include	operations	of	Shasta	Dam.	SWFSC	is	currently	applying	the	reservoir	model	
CE‐Qual‐W2	(W2)	to	Shasta	Lake	and	the	operations	of	Shasta	Dam,	including	the	
Temperature	Control	Device	(TCD).	The	W2	will	then	be	coupled	with	the	RAFT	
model,	and	integrating	it	into	the	DST.	The	goal	of	this	portion	of	the	project	is	to	
provide	the	end	user	with	the	capability	to	examine	a	range	of	operating	scenarios	
for	both	the	thermal	impacts	downstream	on	the	Sacramento	River	and	the	
projected	impacts	on	the	cold	water	resources	of	Shasta	Lake.	
	

	
Figure	4	Temperature	landscape	for	the	Sacramento	River	in	a	“cool”	year	(A);	an	“average”	year	(B);	and	
a	“warm/dry”	year	(C).	All	habitat	above	the	56°	F	isoline	(blue	line)	represents	acceptable	spawning	
habitat	for	Winter‐run	Chinook.	The	locations	and	timing	of	the	winter‐run	redds	(black	circles)	and	
development	times	(horizontal	black	lines)	are	overlaid	to	display	the	temperature	exposure	during	
that	year.	

Enhancements	to	RAFT	
The	current	configuration	of	RAFT	allows	for	the	examination	of	a	limited	number	of	
operating	scenarios	(combinations	of	discharge	temperature	and	flow).	Future	
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versions	will	include	significantly	greater	number	and	wider	range	of	scenarios.	
Additional	temperature	metrics	will	be	included,	such	as	seven	day	average	daily	
maximum	(7DADM),	and	exposure	values	for	individual	redds.	
	
Coupling	the	physical	models	with	biological	data	
There	are	many	agencies	involved	in	the	decision‐making	process	for	temperature	
management	on	the	Sacramento	River,	with	many	different	entities	collecting	
relevant	biological	and	physical	data.	Currently	there	is	no	central	repository	of	
these	data,	making	for	an	inefficient	exchange	of	information,	particularly	during	
workgroup	conference	calls	when	decisions	are	made.	The	revised	DST	would	
include	access	to	the	relevant	data	as	it	is	available.	In	cases	where	the	data	are	
temporally	and	spatially	overlapping,	such	as	redd	locations,	there	will	be	an	option	
to	combine	them	into	a	single	graphic.	

	
Figure	5.	Predicted	water	temperature	at	the	Above	Clear	Creek	compliance	point	under	the	10	percent	
meteorological	forecast	with	a	discharge	of	7250	cfs.	USBR	forecast	values	(blue	line)	were	slightly	
cooler	than	RAFT	(red	line)	and	occasionally	out	of	the	range	of	the	past	25	years	(1990‐2014)	of	
modeled	temperatures	(grey	lines).	

Project	Timeline	
The	RAFT	model	is	already	developed	and	operational	
(http://oceanview.pfeg.noaa.gov/raft/).	The	integration	with	CE‐Qual‐W2	is	
scheduled	to	be	complete	by	spring	2016.	The	development	of	the	Keswick	
Reservoir	model	is	least	certain,	as	it	has	not	be	determined	if	the	best	option	is	to	
extend	the	RAFT	model	upstream	or	extend	CE‐Qual‐W2	downstream	to	
incorporate	the	additional	17km	of	river.	The	improvements	to	the	website	are	
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ongoing,	with	a	working	version	scheduled	for	evaluation	during	the	temperature	
control	season	of	2016.	
	
Questions	for	the	panel:	

1. What	additional	calibration	and	validation	is	recommended	for	the	RAFT	
model?	

2. Coupling	of	the	reservoir	model	with	the	river	model	requires	modeling	the	
intermediate	17km	of	the	Keswick	“river‐reservoir”.	Does	the	panel	
recommend	extension	of	the	RAFT	model	upstream	or	the	CE‐Qual‐W2	
model	downstream?	

3. What	addition	information	or	capabilities	should	be	added	to	the	DST	to	
improve	its	usefulness	to	management?	
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[1] We address the growing need for accurate water temperature predictions in regulated
rivers to inform decision support systems and protect aquatic habitats. Although many
suitable river temperature models exist, few simultaneously model water temperature
dynamics while considering uncertainty of predictions and assimilating observations. Here,
we employ a stochastic dynamics approach to water temperature modeling that estimates
both the water temperature state and its uncertainty by propagating error through a
physically based dynamical system. This method involves converting the governing
hydrodynamic and heat transport equations into a state space form and assimilating
observations via the Kalman Filter. This model, called the River Assessment for
Forecasting Temperature (RAFT), closes the heat budget by tracking heat movement using
a robust semi-Lagrangian numerical scheme. RAFT considers key thermodynamic
processes, including advection, longitudinal dispersion, atmospheric heat fluxes, lateral
inflows, streambed heat exchange, and unsteady nonuniform flow. Inputs include gridded
meteorological forecasts from a numerical weather prediction model, bathymetric cross-
sectional geometry, and temperature and flow measurements at the upstream boundary and
tributaries. We applied RAFT to an �100 km portion of the Sacramento River in California,
downstream of Keswick Dam (a regulatory dam below Shasta Dam), at a spatial resolution
of 2 km and a temporal resolution of 15 min. Model prediction error over a 6 month
calibration period was on the order of 0.5�C. When temperature and flow gage data were
assimilated, the mean prediction error was significantly less (0.25�C). The model accurately
predicts the magnitude and timing of diel temperature fluctuations and can provide 72 h
water temperature forecasts when linked with meteorological forecasts and real-time flow/
temperature monitoring networks. RAFT is potentially scalable to model and forecast fine-
grained one-dimensional temperature dynamics covering a broad extent in a variety of
regulated rivers provided that adequate input data are available.

Citation: Pike, A., E. Danner, D. Boughton, F. Melton, R. Nemani, B. Rajagopalan, and S. Lindley (2013), Forecasting river
temperatures in real time using a stochastic dynamics approach, Water Resour. Res., 49, doi :10.1002/wrcr.20389.

1. Introduction

[2] In recent years, aquatic ecologists and water manag-
ers have shown a renewed interest in the dynamics of river

temperatures, because thermal regimes play a key role in
structuring freshwater ecosystems [Fausch et al., 2002;
Huang et al., 2011; Kaushal et al., 2010; Mccullough
et al., 2009; Olden and Naiman, 2010; Poole and Berman,
2001]. Aquatic organisms tend to have characteristic ther-
mal tolerance limits that are governed by temperature sen-
sitivity in the rates of critical physiological processes. In
extreme cases, acute short-term exposure to temperatures
exceeding tolerance limits may result in severe physiologi-
cal stress or even mortality, but even less extreme cases
can also have important effects on growth and reproductive
potential [Boughton et al., 2007; Crozier et al., 2008;
Hokanson et al., 1977; Martins et al., 2012]. These effects
in turn influence broader ecological processes, such as pro-
ductivity of fish populations, competitive dominance
between similar species, and the spread of disease or inva-
sive species.

[3] Natural temperature regimes have been altered
in many regulated rivers, and management of water
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temperature is sometimes implemented for the protection
of aquatic communities [Carron and Rajaram, 2001; Neu-
mann et al., 2006; Olden and Naiman, 2010; Stanford
et al., 1996; Wilby et al., 2010]. Temperature management
plans are developed to protect endangered species, sustain
economically significant fisheries, and meet public-health
criteria. In the rivers of California’s Central Valley, for
example, dam operations and water withdrawals can dra-
matically alter thermal regimes and impact the health of
endangered salmon populations [Yates et al., 2008; Yosh-
iyama et al., 1998]. The biological effects of water opera-
tions are carefully considered during the relicensing of
major water projects, a process that typically requires that
water managers maintain suitable thermal habitat in addi-
tion to fulfilling agricultural and municipal water needs
[Jager and Smith, 2008; Seedang et al., 2008]. During
drought years when reservoir levels are low, dam operators
may be challenged to meet federally mandated downstream
water temperature targets, and the ecological integrity of
the river may be compromised.

[4] Water management agencies typically employ a tem-
perature monitoring framework to inform their operations
in regulated rivers. Temperature observations are often
made at ecologically significant time scales (subdaily), but
the spatial resolution of the observing systems are some-
times too low to capture longitudinal temperature patterns
that affect downstream aquatic ecosystems. Fine-grained
temperature patterns between monitoring stations must be
inferred using model predictions. Decades of research has
resulted in a suite of statistically and physically based water
temperature models that accurately predict thermal dynam-
ics [Caissie, 2006]. Reliable predictions of water tempera-
tures downstream of reservoirs have proven useful in
making informed water release decisions [Gu et al., 1999;
Huang et al., 2011; Krajewski et al., 1992; Thomann,
1998]. However, relatively little work has been done to
apply such models operationally to forecast the down-
stream impact of management scenarios in real time.

[5] This paper is motivated by a specific case study that
highlights the need for improved river temperature predic-
tion: the Sacramento River below Shasta Dam in Califor-
nia. In an effort to provide suitable thermal conditions for
salmon spawning and rearing habitat, state and federal
agencies set temperature criteria for compliance points
downstream of the dam during critical times of the year
[National Marine Fisheries Service, 2009]. Operators at the
Shasta Dam have the ability to control both the flow and
temperature of releases, thereby presenting a case where
real-time forecasting can directly influence operational
decisions. Although the current operations criteria stipulate
that some temperature models be employed, the criteria
have been criticized for failing to meet biologically rele-
vant temporal and spatial scales. In this paper, we discuss a
potential improvement to the current decision support sys-
tem by linking high-resolution gridded meteorological fore-
casts (TOPS-WRF) [Nemani et al., 2009] with a physically
based water temperature model for real-time river tempera-
ture forecasts.

[6] To accomplish this task, we combine key features of
existing models [e.g., Boyd and Kasper, 2003; Bravo et al.,
1993; Kim and Chapra, 1997; Sinokrot and Stefan, 1993;
Westhoff et al., 2007; Yearsley, 2009] to best suit our goals.

These features include the ability to produce optimal tem-
perature hindcasts and real-time forecasts that are accurate,
estimate prediction error, have fine temporal resolution
(subhourly), and moderate spatial resolution that captures
spatial heterogeneity in temperature at the landscape scale
(10s to 100s of km). Many of these features are available in
existing models, and we will briefly elaborate on their im-
portance to our goals and provide context for their
inclusion.

[7] An important criterion for operations control is the
ability to predict temperatures in novel situations, such as
alternative management scenarios, unprecedented weather
patterns, or altered channel or flow conditions. Ultimately,
this demand requires explicit simulation of the underlying
physical processes, since statistical inference generally per-
forms poorly for novel (out-of-sample) situations. In river-
temperature modeling, this generally implies a heat-budget
approach, which tracks downstream movement of heat
coupled with temperature fluxes across the air-water and
streambed boundary in each channel segment [Evans et al.,
1998; Webb and Zhang, 1997]. Stable, accurate, and robust
numerical schemes to solve the governing thermal and
hydrodynamic transport equations within a one-dimensional
framework are readily available in the literature [Holly and
Preissmann, 1977; Leonard, 1979; Oliveira and Fortunato,
2002; Wallis, 2007].

[8] The treatment of error in modeling studies is crucial
to assess the accuracy of model predictions and to evaluate
risk in management operations; yet, this feature is often
neglected in physically based water temperature models
[Bartholow, 2003]. Dynamic, physically based models are
sensitive to model input data, which can be noisy, incom-
plete, or uncertain. Furthermore, dynamic models always
have some inherent uncertainty in their formulation, which
can lead to prediction error. Two closely related concepts
that address these concerns are error propagation and data
assimilation. Error propagation is the ability to properly
assess the net uncertainty of a function based on the relative
uncertainty of the component variables. Data assimilation
is a suite of methods for combining observations with mod-
els of physical processes to optimally estimate states,
model parameters, and attendant uncertainties [Hobbs and
Ogle, 2011]. Data assimilation techniques assume that the
governing dynamic equations are stochastic and subject to
error. Recent work [Yearsley, 2009, 2012] has advocated a
data assimilation approach to merge physically based water
temperature models with statistical estimates of uncer-
tainty. Such methods were also employed by Krajewski
et al. [1992] and Bravo et al. [1993], who demonstrated
that state space models of water temperature are an effec-
tive framework for forecasting states accompanied by con-
fidence envelopes. This approach is well suited for the
purposes of real-time water temperature forecasting and
optimal control.

[9] The population dynamics of many aquatic organisms
unfold at the landscape scale (100s of km), and therefore it
is necessary to have the ability to model rivers at this broad
extent. However, fine-grained temperature dynamics are
also important for the physiology and behavior of individ-
ual organisms. A trade-off typically exists between broad
extent and fine resolution. Models that predict temperature
at the landscape scale often operate at coarse spatial
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resolution, and models that cover multiple years operate on
a daily or weekly time scale [Ahmadi-Nedushan et al.,
2007; Caissie et al., 2001; Flint and Flint, 2008; Huang
et al., 2011; Mohseni et al., 1998]. However, there are no
significant theoretical or computational constraints to pre-
dict water temperature at fine scales across broad domains
to capture ecosystem dynamics.

[10] The one-dimensional model developed in this paper
consists of three modules describing thermal hydrodynam-
ics, heat fluxes, and data-assimilation techniques. We refer
to these combined modules as the River Assessment for
Forecasting Temperature (RAFT) [Danner et al., 2012].
Through the case study, we demonstrate that RAFT is suit-
able for the Sacramento River in California during the sum-
mertime season when water temperatures are managed.
Our application addresses the physical processes most im-
portant for the Sacramento River, but the modular frame-
work we use allows other components (processes important
for other river systems) to be added in a straightforward
manner. The approach that we use is general, adaptable,
and potentially scalable to other river systems, and should
be broadly useful.

2. Model Formulation

[11] In the following sections, we describe the formula-
tion of the hydrodynamic and heat flux components, and
how they may be adapted into a data-assimilation frame-
work. The hydrodynamic model consists of an advection-
dispersion equation describing the downstream movement
of heat, coupled to a one-dimensional hydrologic routing
model describing the downstream movement of water. The
heat flux component describes sources and sinks of heat
due to atmospheric conditions, lateral inflows, and heat

transfer with the streambed. Data assimilation is the
process of making optimal state estimates by informing
uncertain model predictions with noisy or incomplete
observations, and it is achieved by means of the Kalman
Filter. The standard Kalman Filter uses linear algebra and
works only on systems of equations represented in matrix
notation; in particular, the algebraic form of a state space
model [Grewal and Andrews, 2001; Harvey, 1989]. RAFT
draws upon previously published methods [Bravo et al.,
1993; Georgakakos et al., 1990; Krajewski et al., 1992] to
convert the equations governing hydrodynamics and heat
movement into their state space form (Figure 1).

2.1. Temperature

[12] The advection-dispersion equation, derived from prin-
ciples of continuity and mass conservation, forms the basis of
the thermal hydrodynamic component. Advection is a first-
order transport process describing the downstream movement
of heat with fluid flow, whereas longitudinal dispersion is a
second-order spreading process due to vertical and/or lateral
variations in stream velocity. The one-dimensional advec-
tion-dispersion equation is sufficient to model longitudinal
temperature (T ) dynamics as a function of space position (x)
and time (t) in unsteady nonuniform flow:

@T

@t
þ V

@T

@x
¼ 1

A

@

@x
ADL

@T

@x

� �
þ 1

A
S

where the parameters are water velocity, V , channel cross-
sectional area, A, and a longitudinal dispersion coefficient
DL. The term S represents the sum of heat sources and sinks
that affect channel water temperature, and is discussed in
section 2.3.

Figure 1. Data-assimilation framework for water temperature prediction. The previous state (x̂t�1) is
projected forward in time based on the process model and inputs to predict the state at the next time step
(x̂t ). This prior state prediction is merged with observations via the Kalman Filter to produce a corrected
posterior state estimate (x̂t�1), with corresponding error bars.
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[13] This equation states that, aside from heat fluxes, S,
the rate of temperature change that has an advective com-
ponent proportional to water velocity and the spatial gradi-
ent of temperature, plus a dispersive component
proportional to the curvature (second-order derivative) of
the longitudinal temperature profile.

[14] Using a control volume approach, we discretize the
partial derivatives (spatial and temporal gradients) into a
set of finite difference equations operating on a grid of spa-
tial points x1; x2; � � � xi � � � xIf g and time steps t1; t2;f
� � � tn � � � tNg. The quantity Tn

i represents the average tem-
perature of a grid cell xi at time step tn.

[15] Special care must be taken when discretizing the
advection-dispersion equation to ensure an accurate, nono-
scillating, stable solution [Oliveira and Fortunato, 2002;
Wallis, 2007]. The split-operator, or semi-Lagrangian
approach, is a robust approach that discretizes advection
and dispersion in distinctly different coordinate systems
convenient to their respective properties [Cheng et al.,
1984; Neuman, 1981; Spiegelman and Katz, 2006].

[16] Advection is discretized in Lagrangian (transient)
coordinates using the method of characteristics; a common
technique for solving first-order partial differential equations:

@T

@t
þ V

dT

dx
�

Tnþ1
i � Tn

�i

Dt

where the Lagrangian coordinate, �i, is a point located on
the interval xi; xiþ1½ � whose location is obtained by integrat-
ing the velocity field backward through time (i.e., reverse
particle tracking):

�i ¼ xi �

Ztnþ1

tn

V x; tð Þdt

[17] The associated temperature at the Lagrangian coor-
dinate, T�i

, is then interpolated based on the surrounding
grid points via a higher-order polynomial [Holly and
Preissmann, 1977] or cubic-spline [Ahmad and Kothyari,
2001].

[18] Dispersion is discretized using the Crank-Nicolson
method; a time- and space-centered approximation of a
second-order partial derivative in Eulerian (fixed)
coordinates:

1

A

@

@x
ADL

@T

@x

� �
� 1

AiDx
ADLð Þiþ1

2

Tiþ1 � Ti

Dx

� ���

� ADLð Þi�1
2

Ti � Ti�1

Dx

� �������
nþ1

2

where the subscripts i6 1
2 denote a forward/backward spa-

tial average between points xi and xi61. The superscript nþ
1
2 indicates that the bracketed term is evaluated as an aver-
age between time steps tn and tnþ1.

[19] In the semi-Lagrangian framework, the source term,
S, is evaluated at the Lagrangian coordinate at time tn and
at the Eulerian coordinate at time tnþ1.

2.2. Hydrologic Routing

[20] To link the advection-dispersion equation with flow,
we first express the channel geometry variables
(A;V ;W ;DL) as power-function relationships with dis-
charge of the form:

G ¼ aGQbG

where G represents a geometry variable, Q is discharge,
and aG and bG are rating-curve coefficients and exponents
fitted for that particular variable.

[21] To calculate discharge, Q, we used a one-
dimensional hydrologic routing model based on the
Muskingum-Cunge formulation; a computationally effi-
cient, numerically stable, and physically realistic approxi-
mation of unsteady, nonuniform flow dynamics [Cunge
et al., 1980]. In addition, it is readily adaptable to the state
space formulation used for the data-assimilation component
[Georgakakos et al., 1990]. Conceptually, the Muskingum-
Cunge expresses hydrologic routing as a kinematic wave
(i.e., driven by gravity and pressure) and represents flow
continuity through a channel as a finite series of moving
storage elements. The change in storage between segments
can be estimated from flow and geometry characteristics
[Todini, 2007].

[22] In discrete form, the Muskingum-Cunge formulation
can be expressed as an explicit finite-difference equation:

Qnþ1
iþ1 ¼ c1Qnþ1

iþ1 þ c2Qnþ1
i þ c3Qn

iþ1 þ c4 Qn
ini
þ Qnþ1

ini

� �

where Q is discharge, and Qin is lateral inflow (or outflow).
The averaging coefficients, c1�4, can be represented in
terms of channel parameters.

[23] This equation states that the flow at a grid point is a
weighted average of the flow at adjacent points in space
and time, plus time-averaged inflows. Given initial and
boundary conditions (a known discharge at the upstream
boundary and an initial longitudinal flow profile), this equa-
tion can be solved by recursive substitution to calculate
flow at downstream points.

2.3. Heat Fluxes

[24] The source term, S, in the advection-dispersion
equation represents the summed heat fluxes into and out of
the river water column. Here, it is useful to group the heat
fluxes into four general components : heat exchange at the
air-water interface, heat exchange at the streambed-water
interface, heat inputs from lateral inflows (e.g., tributaries),
and heat losses from water withdrawals:

S ¼ W

cw�w

�air þ
P

cw�w

�bed þ
Qin

Dx
Tin � Tð Þ � Qout

Dx
Tout � Tð Þ

where W is channel top-width, P is the wetted perimeter,
�air is net heat exchange at the air-water interface, �bed is
the net heat exchange with the streambed, Qin and Tin are
incoming flow and temperature, Qout and Tout are outgoing
flow and temperature, and cw and �w are the heat capacity
and density of water.

[25] The first two terms describe net heat movement
across the air-water and water-streambed interfaces,
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respectively. The third and fourth terms describe effects of
water inflows and withdrawals, respectively, and simply
represent the effect of volumetric mixing or diversion of
water.

[26] Heat transfer between the atmosphere and the water
column is modeled as a function of meteorological parame-
ters and water temperature. Following Boyd and Kasper
[2003], Evans et al. [1998], and Webb and Zhang [1997],
net heat transfer has components due to radiation (solar
radiation, incoming longwave radiation, outgoing long-
wave radiation), and molecular movement at the interface
between air and water (latent heat of evaporation and
conduction):

�air ¼ �sol þ �atmð Þ � �wat þ �evp þ �con

	 


where �air is the net heat flux at the air-water interface, �sol

is solar (shortwave) radiation attenuated by the water col-
umn, �atm is incoming atmospheric (longwave) radiation,
�wat is outgoing longwave radiation, �evp is the latent heat
of evaporation, and �con is the heat flux due to conduction.

[27] Solar radiation attenuated in the water column is a
function of the solar radiation at the stream surface (�swÞ, a
reflection coefficient (RwÞ, and an attenuation parameter
(�Þ that is dependent on stream depth and properties of the
streambed:

�sol ¼ � 1� Rwð Þ�sw

[28] Incoming and outgoing longwave radiations are
both based on the blackbody formula, where emitted radia-
tion is proportional to temperature:

�atm ¼ "a� 1� Rlð Þ Ta þ 273:15ð Þ4
�wat ¼ "w� T þ 273:15ð Þ4

where Ta is air temperature, "a and "w are the emissivity of
air and water, � is the Stefan-Boltzmann constant, and Rl is
a reflection coefficient.

[29] Latent heat flux due to evaporation is related to the
difference in vapor pressure between a thin layer of air
directly at the water surface (at the water temperature) and
a saturated layer 2 m above the water surface (at dew point
temperature), as well as a function of wind speed f wð Þ.

�evp ¼ �wLef wð Þ es Tð Þ � es Tdð Þð Þ

where Leis the latent heat of evaporation, �wis the density
of water, and es Tð Þindicates the saturated vapor pressure at
temperature T .

[30] Sensible heat flux (conduction) is the molecular
transport of heat between the water surface and surrounding
air and is based on the Bowen Ratio relating evaporation
and conduction. It is proportional to the temperature differ-
ential between the water surface and overlying air, as well
as the wind function:

�con ¼ ��wLef wð Þ T � Tað Þ

where � is the psychrometric constant.

[31] Streambed conduction is driven by the temperature
differential between the streambed and the water column:

�bed ¼ � B� Tð Þ

where B is streambed temperature and � is a thermal con-
ductivity coefficient.

[32] Other minor sources of heat may exist and are read-
ily added to the source term if deemed appropriate.

2.4. Streambed

[33] Heat exchange between the water column and the
streambed may be significant in some rivers, particularly
during low-flow periods. Using the formulations given by
Boyd and Kasper [2003], the streambed is modeled as a
thin zone between the water column and a deeper ground-
water reservoir and can be thought of as a transient storage
zone for heat. To model this two-way coupling, the bed
temperature becomes another state variable that must be
explicitly discretized by means of a simple forward differ-
ence equation:

Bnþ1
i ¼ Bn

i þ Dt
1

cb�bdb
�bnet

where B is the temperature of the streambed, cb is the heat
capacity of the streambed, �b is the density of the
streambed, db is the depth of the streambed, and �bnet is the
net heat flux to the streambed.

[34] In this relatively simple formulation, three physical
processes affect the temperature of the streambed: solar
radiation penetrating the water column, and conduction
driven by the temperature differential between the streambed
and both the water column and deeper groundwater reser-
voir. The net heat flux to the streambed is given as:

�bnet ¼ ’ 1� Rwð Þ þ � dbð Þ B� Tð Þ þ � dbð Þ B� Tg

	 


where B is streambed temperature, ’ is a depth-dependent
shortwave radiation attenuation coefficient, Rw is a reflec-
tion coefficient, � is a thermal conductivity coefficient, Tg

is the temperature of alluvial groundwater, and db is the
depth of the streambed.

2.5. Boundary and Stability Conditions

[35] Upstream and downstream boundary conditions are
required to constrain the solution to the discretized equa-
tions. The upstream boundary condition is a known flow
and temperature at point x0. The downstream boundary
condition is an assumed spatial gradient in temperature
equal to zero. As an initial condition, temperature, flow,
and bed temperature must be specified at each grid point
for the first time step.

[36] Two conditions on the spatial and temporal grid
spacing must be met to achieve an accurate nonoscillating
solution [Chapra, 1997]. First, a spatial grid spacing is cho-
sen to meet the Peclet condition Dx < 2 DL

V

	 

, then a tempo-

ral grid spacing is chosen to meet the Courant condition
Dt < Dx

V

	 

. These two criteria ensure that a fine enough spa-

tial grid size exists to handle the advection terms in the
presence of dispersion, and so that the distance a parcel of
water travels in a computational time step does not exceed
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the distance between grid points. In our application, we
found that a 2 km spacing at 15 min intervals satisfied both
these conditions.

2.6. Data Assimilation

[37] State space models describe two time-series models
evolving simultaneously: a process-model and an observa-
tion model [Grewal and Andrews, 2001; Harvey, 1989].
The process model describes the evolution of the state from
one time step to the next based on state-transition parame-
ters and model inputs. The second describes how the states
produce observations. When both models are subject to
error, their formulation becomes stochastic. Error may
stem from inadequate modeling, incorrect estimates of pa-
rameters, uncertainty in inputs and measurement error.

[38] Following the methods of Bravo et al. [1993], Geor-
gakakos et al. [1990], Krajewski et al. [1992], and Yearsley
[2009], we convert the discretized equations for temperature,
flow, and bed temperature into a linearized matrix equation.
The linearization procedure involves approximating differ-
entiable nonlinear terms as a first-order Taylor series about
reference point. Ultimately, the model formulation is
reduced to a general state space form described by two time-
dependent stochastic equations of both state evolution and
observation:

xt ¼ Ftxt�1 þ Btut þ cþ wt

zt ¼ H txt þ vt

where xt is the state vector, ut is the input vector, c is a vec-
tor of constants from the linearization procedure, and zt is
the observation vector. Note that the notation here is
changed slightly so that the subscript t refers to the time
step, as spatial dimensions are not applicable.

[39] The elements of the state vector are the temperature
(T ), flow (Q), and bed temperature (B) at each grid point :
x ¼ T1 . . . TI;Q1 . . . QI;B1 . . . BI½ �T . The input vector con-
tains the external inputs that affect model state and includes
(1) flow and temperature at the upstream boundary
j ¼ T0;Q0½ �ð Þ, (2) flow and temperature inputs and outputs

at each grid point (k ¼ Tin;Qin;Qout½ �Þ, and (3) the six me-
teorological variables at each grid point m ¼ Ta; Td ;½
w; �sw; �atm; Tg�Þ such that u ¼ j; k1 . . . kI;m1 . . . mI½ �T .
The observation vector, zt, contains any measurements of
flow and temperature.

[40] Matrices Ft, Bt, and H t are the state-transition
model, the control-input model, and observation model.
These matrixes are expressed as time variable, but these
may be assumed to be constant throughout the duration of
the simulation for computational efficiency. Ft and Bt are
square matrices with dimensions of that equal to their re-
spective vectors, and express how the state vector at the
previous time step and model inputs are transformed into a
new estimate of state. Matrix H t, with dimensions of the
length of the state vector and the number of observations,
maps how the state vector relates to observations.

[41] The error terms, wt and vt, are white noise vectors
that are assumed to be mutually independent and drawn
from separate uncorrelated zero-mean multivariate normal
distributions with covariances Qt and Rt, respectively. The
constitute elements of diagonal matrices Qt and Rt are the

background error variances of the process and observation
models.

[42] The goal of the stochastic model is to combine the
system dynamics with the measurement information to opti-
mally estimate the state vector xt. The Kalman Filter pro-
vides a way to obtain an unbiased, least squares estimate of
xt given observations up to time t, and knowledge on the
distribution of white noise sequences wt and vt. Covariance
matrices Qt and Rt are sometimes known a priori, but may
also be estimated by maximizing a likelihood function
[Harvey, 1989]. Here, we specified the diagonal elements of
Rt as 0.1�C2 to account for measurement error and uncer-
tainty in location relative to the grid points, and estimated
the elements of Qt based on likelihood maximization.

[43] The Kalman Filter is a two-step predictor-corrected
process. First, prior estimates of the mean state vector x̂tð Þand
error covariance matrix (P�t Þ are obtained from the state-
transition equation, without considering any observations:

x̂t ¼ Ftx̂t�1 þ Btut þ c
P�t ¼ FtPt�1FT

t þ BtPU BT
t þ Qt

where PU is the error covariance matrix of input vector ut

(containing uncertainty about boundary conditions, inflows
and outflows, and meteorological conditions). The error
variance terms in PU for boundary conditions and inflows
were specified to be a small value (these were relatively
constrained). Meteorological uncertainty was provided by
the auxiliary weather forecast model.

[44] When observations (zt) are available, the following
corrections are made to obtain a posterior estimate of the
state mean and covariance, x̂t and Pt :

x̂t ¼ x̂t þ K t zt �H tx̂tð Þ
Pt ¼ P�t � K tH tP

�
t

where K t is the Kalman Gain matrix, a weighting term
describing the relative contribution of the model prediction
and observation to the overall estimate of state. It is com-
puted as the matrix equivalent of the system error covari-
ance relative to the total residual covariance:

K t ¼ P�t HT
t H tP

�
t HT

t þ Rt

	 
�1

[45] In the case where observation error is very small
compared to the process error, the Kalman Filter updates
the state at observed locations to a value that is very close
to the measured value. Furthermore, filtered state estimates
at locations near gages are also updated, thus updating the
entire profile. For forecasts, we only use the prediction
equations, as no observations are available to assimilate.

3. Example Application of RAFT

[46] We applied the RAFT model to a 100 km stretch of
the Sacramento River in Northern California, from Kes-
wick Dam (below Shasta Dam) to Red Bluff Diversion
Dam (Figure 2). This area was chosen because (1) it is criti-
cal spawning and rearing habitat for endangered salmonids,
(2) state and federal agencies have established temperature
compliance standards, (3) dam operators have control over
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outflow discharge and temperature, and (4) it is well moni-
tored and surveyed, ensuring that the necessary inputs and
validation data for the model are available.

3.1. Study Area

[47] Shasta Dam is a large hydroelectric power-
producing dam owned and operated by the Bureau of Rec-
lamation. In the late 1990s, the dam was retrofitted with a
temperature control device, allowing for the controlled
release of cold water from the hypolimnion of the thermally
stratified Shasta Reservoir. Provided that the reservoir con-
tains adequate cold-water storage, dam operators can dis-
charge cold water during critical times of the year to meet
temperature requirements downstream.

[48] Keswick Dam, a smaller flood-controlling dam
approximately 15 km downstream, works in tandem with
Shasta Dam. The forebay, Keswick Reservoir, accumulates
releases from Shasta Dam as well as augmented flows
transferred from the neighboring Trinity River basin. Oper-
ators at Keswick Dam schedule flow releases to maximize
hydroelectric power production and also to mitigate flood-
ing downstream. Keswick Dam is the barrier to migration
for anadromous fish and is considered the upstream bound-
ary for the model. We assume that the water temperature at
Keswick Dam is controllable, since it is a combination of
deliberately managed thermal inflows.

[49] Red Bluff Diversion Dam marks the downstream
boundary of the study area. It can divert water from the
Sacramento River to a network of agricultural canals by
closing a series of gates. The gates are often closed during

the summer months for agricultural purposes, altering the
thermal regime in the vicinity of the dam by impeding flow
and buffering heat transfer.

[50] Several small tributaries flow into the main stem of
the Sacramento River within the study area. One of these
tributaries—Clear Creek—is regulated and governed by
outflows from Whiskeytown Reservoir, whereas the other
tributaries are free flowing. The combined inflow of these
tributaries is generally minor relative to the main stem, but
these accretions may be significant during storms and are
therefore included in the model.

[51] We tested the accuracy of the RAFT model for the
period of May through October 2010. A uniform grid spac-
ing of 2 km was used at a 15 min time interval.

3.2. Weather Data

[52] Weather hindcasts and forecasts were modeled sepa-
rately and provided as inputs to RAFT. The Terrestrial Ob-
servation and Prediction System (TOPS) is a modeling
framework that integrates satellite data, ground-based mon-
itoring data, microclimate mapping, and physical simula-
tion models [Nemani et al., 2009]. TOPS was used to
parameterize the Weather Research and Forecasting (WRF)
model, an industry-standard three-dimensional numerical
weather prediction model. Specifically, TOPS refines esti-
mates of soil moisture (a highly sensitive boundary condi-
tion in WRF) using a biogeochemical cycle model that
assimilates satellite observations of land surface conditions
to improve meteorological predictions. The resulting output
of the coupled TOPS-WRF model is an array of estimated
meteorological conditions on nested spatial grid, with a
spatial resolution as fine as 1 km, and a temporal resolution
of 1 h. Using high-end computing resources provided by
the NASA Earth Exchange [Nemani et al., 2011], TOPS-
WRF has the ability to hindcast over periods of 10 years or
more. Additionally, TOPS-WRF can be run in near real
time to produce forecasts up to 96 h into the future. To esti-
mate heat fluxes, RAFT uses the TOPS-WRF predictions
of incoming solar radiation, incoming longwave radiation,
air temperature, wind speed, and relative humidity. Hourly
hindcasts and forecasts were interpolated to a 15 min time
step prior to use as inputs into RAFT.

3.3. Channel Geometry

[53] The channel geometry is characterized by a series of
channel cross-sections, spaced �500 m on average,
throughout the study area. Cross-sections were surveyed by
the California Department of Water Resources in a compre-
hensive study conducted in the early 2000s. Using the
Hydrologic Engineering Center’s River Assessment System
(HEC-RAS), we performed a suite of steady flow simula-
tions to compute channel geometry characteristics at each
cross-section at varying flow rates. We then fit rating
curves for each geometric variable and interpolated the
results to the model grid.

3.4. Flow and Temperature Observations

[54] Water temperature and discharge are monitored at
Keswick Dam. Four additional water temperature gages
and one flow gage are located at ‘‘compliance points’’
along the main stem within the study area. These include
Balls Ferry (BSF, 41 km downstream), Jellys Ferry (JLF 56
km), Bend Bridge (BND, 72 km), and Red Bluff (RDB, 94

Figure 2. Map of the Sacramento River study area below
Shasta Dam. Significant tributaries and temperature gaging
stations (compliance points) are shown.
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km) (Figure 2). The one flow gage is located at Bend
Bridge. Gages are operated by the United States Geological
Survey (USGS), with observations collected at 15 min to
hourly intervals. Data are made available in near real time
through the California Data Exchange Center (CDEC).
Additionally, flow and temperature are monitored along the
four main tributaries by various agencies, and outflows are
monitored by several irrigation and municipal districts.

4. Results

[55] We assessed the accuracy of the process model
(with no data assimilation) by comparing in-stream temper-
ature and flow measurements against model predictions.
We considered several indices of prediction deviation; the
root mean square error (RMSE) to assess overall predictive
power, the mean of the residual to indicate model bias, and
the variance of the residuals as a measure of model
precision.

[56] The RAFT model captured the river temperature dy-
namics at the four compliance points with RMSE of the
deterministic predictions ranging from 0.57�C to 0.72�C
for the May–November 2010 test period (Table 1). River
temperature during this time period ranged from 9.5 to
16.6�C. Model bias (prediction-observed) ranged from
�0.10 at BSF to �0.41�C at RDB, such that the model
underpredicted temperature, with the degree of underpre-
diction increasing downstream. The model performance
varies between months, where the RMSE of model predic-
tions was greater in the first and last months (May and Oc-
tober) than in the intervening months (Table 2). Similarly,
the hydrologic routing component of RAFT predicted dis-
charge at the one flow gage (BSF) with an RMSE of 12.4
m3 s�1, or an approximate error of 4%, over a flow ranging
from �180 to 520 m3 s�1. On average, RAFT slightly
underpredicted discharge, with a model bias of �0.5 m3

s�1.
[57] A graphical comparison of predicted versus meas-

ured water temperatures at the four compliance points over
the span of one typical autumnal month (September 2010)
shows that model predictions accurately reproduced both
the magnitude of diel variation and the timing of the mini-
mum and maximum temperatures (Figure 3a). The least
accurate model predictions occurred at RDB, as the gates
were closed at Red Bluff Diversion Dam during this month,
creating unique thermal conditions that were difficult to
replicate.

[58] The resolution of RAFT allows for the detection of
substantial variation in water temperature both in time and
space (Figure 3b). Temperature is represented as a filled
contour plot on time and longitudinal distance axes, which
we refer to as a ‘‘temperature landscape.’’ A horizontal line

represents a time series of temperature as a single location,
and a vertical line represents a longitudinal temperature
profile at one point in time. Several patterns are evident.
First, water temperature generally increased with distance
downstream from Keswick Dam, varying from a longitudi-
nal range of 1.8�C to as much as 5.7�C depending on the
weather and flow conditions. Average water temperature
increases monotonically downstream (Figure 3c). Second,
the diel temperature range varies by location. Upstream
releases from Keswick Dam are approximately a constant
temperature over time, with an average diel range of 0.2�C.
Average diel range increases to a maximum of 1.2�C
around 45 km, coinciding with 12 h travel time. These

Table 1. Error Statistics of the Deterministic Predictions (May–
October 2010)

Location RMSE (�C)
Residual

Mean (�C)
Residual

Variance(�C)

BSF 0.57 �0.10 0.32
JLF 0.56 �0.24 0.25
BND 0.48 �0.13 0.22
RDB 0.72 �0.41 0.35

Table 2. Root Mean Squared Error (RMSE, �C) of the Determin-
istic Predictions by Month

Location May Jun Jul Aug Sep Oct

BSF 0.57 0.41 0.53 0.57 0.50 0.83
JLF 0.89 0.61 0.25 0.31 0.37 0.81
BND 0.80 0.42 0.32 0.30 0.35 0.69
RDB 1.10 0.68 0.26 0.52 0.64 0.99

Figure 3. (a) Time series plots of predicted versus meas-
ured temperature values at the compliance points. (b)
Contour plot of temperature in time and in space (‘‘Tem-
perature Landscape’’). (c) Longitudinal profile of monthly
mean temperature 6 1 s.d.
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minima and maxima in temperature range (Figure 3c) are
referred to as ‘‘nodes’’ and ‘‘anti-nodes’’ and are discussed
later. However, the formulation of this unique pattern dem-
onstrates the accuracy of model predictions.

[59] Model predictions were substantially improved by
the application of the Kalman Filter and assimilation of
gage data (Figure 4a). When gage data were assimilated,
error variance approached 0.1�C2 (the specified measure-
ment error) near each compliance point ; essentially equal
to the minimal observation error. The location of maximum
prediction variance (0.35�C2) occurred at the midpoint or
directly upstream from compliance points. In contrast,
when error was propagated through the system dynamics
without assimilating data, the state error variance increased
nearly monotonically downstream, with a maximum pre-
diction variance of 0.65�C.

[60] The error variance of model predictions increased
with lead time (Figure 4b). With a lead time of 15 min
(one-step), the prediction error ranged from 0.08 to 0.15�C.
As the lead time increased to 24 h, the prediction error
approached that of the purely deterministic model, because
this was the travel time of water from the upstream to
downstream boundaries. After 24 h, none of the observa-
tions that were available when the forecast was initiated
continued to inform temperature estimates.

[61] The contribution of the individual model compo-
nents varied in both space and time. The total change in
temperature with respect to time displays a pattern of day-
time heating and nighttime cooling (Figure 5). Heat inputs
from the atmosphere and bed are responsible for the

bulk of daytime heating, whereas advection accounts for
nighttime heat losses. These two processes contributed
most to the overall change in temperature. The influence of
longitudinal dispersion and tributary inputs were almost an
order of magnitude less.

[62] Advective heat losses display a slanted pattern on
time and distance axes, where the slope of the bands is
equal to the velocity of the river. During the nighttime,
cold water releases from the upstream boundary move
downstream with the flow of the river. In contact, heat flux
inputs display vertical bands, indicating that they vary
more in time than in space. Significant heat transfer due to
longitudinal dispersion was confined to localized regions in
space and time, coincident with longitudinal changes in
channel geometry (i.e., widening) or steep changes in the
temperature gradient. Tributary heat inputs were either pos-
itive (when the incoming creek was warmer) or negative
(when incoming water was cooler), and the magnitude
depended upon the relative thermal mass entering the river.

[63] We applied RAFT to the management problem of
maintaining water temperatures below a target threshold
(13.3�C) at a downstream compliance point. We issued 72
h forecasts during a challenging management period (late
September), where a combination of warm weather and
depleted cold-water resources in the Shasta/Keswick reser-
voirs contributed to the potential for elevated downstream
temperatures and compliance exceedance. Figure 6 shows
the effect of nine potential management scenarios on water
temperatures at the primary compliance point at Balls
Ferry. Each scenario used a different combination of

Figure 4. (a) Forecast error variance as a function of position and lead time. (b) Longitudinal profile of
posterior error variance once data have been assimilated (red), and profile of error variance after 24 h/
nonassimilated.
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reservoir release temperature (10.0, 11.1, and 12.2�C) and
discharge (140, 280, and 420 m3 s�1) as input, while hold-
ing the other variables (meteorological forecasts and tribu-
tary inflows) constant. Changes in both flow and temperature
influenced downstream temperatures, with some scenarios
meeting, and some exceeding compliance. Higher release
flows (by up to a factor of 3 in this example) decreased the
temperature at Balls Ferry by approximately 0.5 to 1�C.
Altered release temperatures had a more pronounced influ-
ence on compliance point temperatures, where an increase in
2�C could change downstream temperatures by almost
1.5�C. Temperature forecasts were accompanied by 95%
confidence bands, taking into account uncertainty in the me-
teorological forecast, the process-model, and the ability to
meet prescribed reservoir releases.

5. Discussion and Summary

[64] The RAFT framework effectively modeled river
water temperature in the longitudinal direction by merging
desirable features of previous models into a more compre-
hensive framework. It links flow, water temperature,
weather, and bed temperature dynamics within a state space
framework that efficiently propagates error and optimizes
the estimate of state. Our application of RAFT to the study
area on the Sacramento River demonstrates how the model
addresses the desired features outlined in the introduction.
Below, we summarize key lessons from our example and
discuss issues regarding using RAFT as a management
tool, and the adaptability of RAFT to other river systems.

[65] The RAFT model performed well (max of 0.72�C
RMSE) across a broad spatial extent (100 km of river), at
fine-grained temporal resolution (subhourly intervals), and

over a relatively long time scale (6 months). In the purely
deterministic formulation (without data assimilation), a
comparison between model predictions and water tempera-
ture measurements at multiple locations indicated a minor
downstream increase in model bias, such that the model
slightly overpredicted water temperature at reaches near
the dam and underpredicted temperatures further down-
stream. Although model bias is inevitable, the trend in the
bias suggested that some heat fluxes may have been
improperly formulated, or that unobserved sources of heat
existed that we were unable to quantify. However, the var-
iance of the residuals ranged from 0.22 to 0.35�C, suggest-
ing relatively high precision in predictions despite an
apparent bias.

[66] Furthermore, the model captured a longitudinal pat-
tern of diel variation that is exhibited by the river, where
the maximum range of daily temperatures occurs at 12 h
downstream from the dam, and a minimum range occurs at
24 h downstream. Referred to as ‘‘nodes’’ and ‘‘antinodes’’
[Deas et al., 1997], this pattern occurs only in regulated
rivers where the temperature of water at an upstream
release is relatively constant [Carron and Rajaram, 2001;
Lowney, 2000]. This pattern is explained in terms of track-
ing parcels of water through daytime heating and nighttime
cooling cycles. RAFT is able to simulate these dynamics,
even without the data assimilation component, which is
something only possible by modeling physical processes.

[67] The model inferred a detailed and precise ‘‘tempera-
ture landscape’’ (Figure 3b), which provided substantial in-
formation about the thermal dynamics of the river,
including delineation of the contributing heat sources and
sinks (Figure 5). A comparison of heat flows showed that
the bulk of heat transfer is dominated by downstream

Figure 5. Model components in space and in time. The net change in temperature with respect to time
(dT/dt) is the sum of advective, diffusive, atmospheric/streambed, and tributary heat fluxes. Diffusion
and tributary heat fluxes have been scaled by a factor of 10 for visualization purposes.
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advection and heat-exchange with the atmosphere. Longi-
tudinal dispersion of heat was relatively minor in our appli-
cation, but may play a larger role in rivers that experience
sharp spatial gradients in temperature or are very slow
moving. Tributary inflows played a minor role in influenc-
ing the temperature, at least in the study area, mainly
because of their relatively small flow. However, tributary
effects are expected to become more significant the closer
the two rivers are in size, and must certainly be considered
when expanding the model formulation to a river network.
For networks with many regulated tributaries, the RAFT
framework could be used to coordinate releases across the
system to maximum desired management effect.

[68] The accuracy and precision of model predictions
were limited by the quality of model inputs, and by the real-
ism of the modeled processes. For example, formulations of
heat exchange at the air-water interface, as well as thermal
advection and dispersion, are well established. Regarding
the magnitude of heat sources, our results agree with many
previous studies [Evans et al., 1998; Webb and Zhang,
1997]. We note that solar radiation constitutes the greatest
net influx of heat, but during the nighttime, longwave radia-
tion, evaporative heat-loss, and advection contribute most to
heat losses/gains. In contrast, bed-temperature estimation is

an area that warrants further research. In our simulations, the
magnitude of streambed-water column coupling through
conduction was not as large as other heat sources, but we
found it was still significant enough to warrant its inclusion.
The main effect of this water-streambed coupling was diel
amplitude modulation and phase adjustment of the water
temperature. This effect is difficult to verify without actual
bed temperature measurements and can only be inferred
based on its interaction with observed water temperature.
Some research suggests that this coupling can safely be
excluded in larger and deeper rivers [Bravo et al., 1993;
Sinokrot and Stefan, 1994]. However, the effect is likely to
become more prominent in smaller, shallower rivers, such as
midsized rivers in California during the summertime low-
flow period. The assumption that the bed effect may be omit-
ted may not always be warranted, and would tend to have
the effect of eliciting larger water releases than necessary to
maintain a given maximum daily temperature.

[69] The data assimilation component in RAFT has
many advantages over a purely deterministic formulation,
namely optimal state estimation and propagation of error.
These features are crucial for optimal control, risk manage-
ment, and water management decision making. In real-time
forecasting, it is important to have an ‘‘up-to-the-minute’’

Figure 6. Temperature forecasts under different management scenarios at the Balls Ferry compliance
point. Both release flow and temperature from the reservoir are varied, while the meteorological forecast
is held constant. The ensemble of temperature predictions indicates which scenarios may exceed the
compliance limit (dashed line). Shaded area represents 95% confidence interval.
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estimate of the model states. The Kalman Filter allowed
RAFT to incorporate all available observations up to the
current time step to optimize state predictions and correct
for model bias. When a forecast is issued, the attendant
uncertainties of each of the state parameters and input vari-
ables (i.e., meteorological variables) are routed through the
system dynamics to assess the total uncertainty of predic-
tions. As with any forecast, uncertainty increases with time
and is related to the quality of the meteorological forecasts
and consistency of the boundary conditions (discharge vol-
ume and temperature).

[70] RAFT can be used to inform decisions for managed
rivers where water agencies control the flow and/or temper-
ature releases from dams. In the Sacramento River exam-
ple, both of these control ‘‘knobs’’ are tunable. However,
even when temperatures are monitored at a compliance
point, real-time feedback control is limited by the time
lag—on the order of hours to days—from the time that a
parcel of water is released at the upstream boundary to its
arrival at the compliance point. Forecasting ability can mit-
igate this lag by informing managers how present and
future water releases will affect the future temperature
downstream, given an accurate weather forecast. By using
RAFT to evaluate different flow and temperature scenarios,
managers can learn which range of releases would ensure
compliance. In addition, managers can choose an optimized
flow/temperature release scenario to simultaneously meet
operational requirements and compliance standards. The
model can be applied beyond rivers regulated by dams,
such as examining the effect of water withdrawals on main
stem temperatures, and can also be used to consider the
downstream effects of thermal effluent from industrial
operations and power plants.

[71] The accuracy of the RAFT heat-budget module is
driven by meteorological forecasts. For near-term water
temperature forecasts, high-quality gridded meteorological
forecasts are an essential component of RAFT. In this
study, we used TOPS-WRF to provide 72 h forecasts as
proof of concept that such meteorological data set can be
integrated into water temperature forecasts. However,
TOPS-WRF is not currently an operational modeling
framework supported by any agency. Operational gridded
meteorological forecasts based partially on WRF are avail-
able in near real-time through the United States from the
National Weather Service (NWS). In comparison with the
15 min TOPS-WRF forecasts, the NWS forecasts are at 3 h
intervals and require temporal interpolation before being
incorporated into the RAFT model. However, the NWS
forecasts currently extend out to 7 days and their inclusion
in RAFT could lead to reliable and extended water temper-
ature forecasts.

[72] Longer term forecasts (on the order of months)
would be valuable for seasonal planning. For example,
Shasta Reservoir has a fixed amount of cold water that
must be conserved to last through an entire temperature
critical season for salmon (late spring-late fall). Weather
generation simulations based on climate projections can be
used to inform water managers of the probability that cer-
tain weather events of interest will occur within this time
frame. A proposed extension of RAFT is to link the water
temperature model with seasonal ensemble weather predic-
tions. The result would be a probabilistic forecast of water

temperatures given the likely climate and water demands
up to 6 months ahead.

[73] Because the RAFT framework uses discretized
models of physical processes and operates over large areas,
it should be highly scalable and readily adaptable to a wide
variety of river systems. How well the model will function
in these systems will be driven, in part, by the quality of
the input data. The required data are upstream flow and
temperature observations (boundary conditions), river bath-
ymetric cross-sections, meteorological observations/predic-
tions, and inflows/outflows. The boundary conditions are
often available for regulated rivers where water agencies
monitor flow and temperature at dams, power plants, and
other structures. The quality and resolution of river ba-
thymetry and meteorological data can be highly variable,
which could significantly impact temperature and flow pre-
dictions. High-resolution bathymetric data are available for
many major rivers, but they are expensive data sets and are
not widespread for minor rivers. In lieu of detailed cross
sections, regional downstream hydraulic geometry relation-
ships can be substituted, but with a potential decrease in ac-
curacy that would be hard to quantify. Flow and
temperature observations at tributary junctions and water-
withdrawal facilities are not always available. In the case
where flow and temperature at tributaries are unobserved,
additional models may be constructed to estimate these
inflows (outside the scope of this paper). However, temper-
ature monitoring networks are expanding due to the
decreasing cost of instruments, and such data can be readily
incorporated into RAFT for assimilation, validation, and
calibration.

[74] Adaptation of RAFT to physiographically different
stream and river systems may require modification of exist-
ing processes and/or the addition of new processes. This is
straightforward in RAFT because of the additive nature of
the source terms. Potential extensions could consider ripar-
ian and topographic shading, snowmelt, and/or hyporheic
flow [Bogan et al., 2004; Evans and Petts, 1997; Johnson,
2004]. As one immediately useful extension to our applica-
tion, RAFT may benefit from a linkage with a distributed
rainfall/runoff model [e.g., Yearsley, 2012] to account for
accretions of flow and additional heat advected from run-
off. For this extension, the time scale of the model simula-
tion may need to be adjusted near peak flows so that the
stability criteria are not exceeded. RAFT relies on semi-
Lagrangian algorithms to handle advection and dispersion
processes in their natural coordinates, which provides
robustness and minimized numerical artifacts. But these
algorithms also imply specific mathematical constraints on
the combination of temporal and spatial resolution the
model can achieve.

[75] In general, to achieve finer spatial resolution in
model outputs requires finer temporal resolution as well.
For our application, a spatial and temporal resolution of 2
km and 15 min was sufficient to capture downstream tem-
perature dynamics at an ecologically relevant scale. Finer
spatial resolution may be more appropriate for smaller riv-
ers to evaluate spatial heterogeneity, but is less critical in
our application because small habitat patches do not hold
the same importance as short-term thermal extremes. One
fundamental trade-off appears to be that, in order to have a
1-D model that is computationally suitable for forecasting,
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the model will not capture thermal heterogeneity caused by
incomplete mixing at small tributary or groundwater inputs,
or in deep pools, which in our application limits spatial re-
solution to �1 km. However, smaller scale (10–100 m)
thermal heterogeneity may be difficult to reproduce if that
heterogeneity is due to a process that is not explicitly mod-
eled and difficult to measure (i.e., losing/gaining reaches
due to hyporheic flow). In these cases, finer levels of spatial
resolution may be better addressed through two- and three-
dimensional models.

[76] In summary, the RAFT model has several qualities
that make it useful for assessing managed rivers. It gener-
ates accurate predictions and estimated error, in real-time,
at fine spatial and temporal resolutions over large area, and
can predict novel management scenarios. These predictions
are based on distinct processes, allowing the contribution
of each process to be quantified. The model incorporates
forecasting, which allows managers to predict the effects of
their actions in real time.

Notation

Independent Variables

x Distance [m]
t Time [s]
I Number of distance steps [#]

N Number of time steps [#]
O Number of observations [#]

State Variables

Q Discharge [m3 s�1]
T Water temperature [�C]
B Streambed temperature [�C]

Meteorological Inputs

Ta Air temperature [�C]
Td Dew point temperature [�C]
w Wind speed [m s�1]

�sw Shortwave radiation at the stream surface [W m�2]
�lw Longwave radiation at the stream surface [W m�2]
Tg Groundwater temperature [�C]

External Inputs

Qin Discharge of inflow [m3 s�1]
Qout Discharge of outflow [m3 s�1]

Tin Temperature of inflow [�C]

Channel Geometry

W Channel top width [m]
P Wetted perimeter [m]
V Average flow velocity [m s�1]
A Cross-sectional area [m2]

DL Thermal dispersion coefficient [m2 s�1]
db Depth of the streambed [m]

Flow-Dependent Parameters
� Lagrangian coordinate [m]
� Transmissivity of water [–]
’ Attenuation coefficient [–]

Heat Fluxes

�air Net heat flux at air-water interface [W m�2]
�sol Attenuated solar radiation [W m�2]
�atm Incoming longwave radiation [W m�2]
�wat Outgoing longwave radiation [W m�2]
�evp Latent heat flux [W m�2]
�con Sensible heat of conduction [W m�2]
�bed Conduction with streambed [W m�2]
�bnet Net heat flux to streambed interface [W m�2]

Constants

Rw Reflection coefficient (0.09) [–]
Rl Reflection coefficient (0.03) [–]
"w Emissivity of water (0.96) [–]
� Stefan-Boltzmann constant, (5.67� 10�8) [W m�2 �C]
�w Density of water (1000) [kg m�3]
�b Density of sediment (1600) [kg m�3]
cw Specific heat capacity of water (4180) [J kg�1 �C�1]
cb Specific heat capacity of sediment (2219) [J kg�1

�C�1]
�w Thermal conductivity of water (0.6) [W m�1 �C�1]
�b Thermal conductivity of sediment (15.9) [W m�1

�C�1]
Le Latent heat of evaporation, (2.26 � 10�6) [J kg�1]
� Psychrometric constant, (6.6) [mb �C�1]

Vectors

xt State vector (dim¼ 3I � 1)
ut Input vector (dim¼ (9Iþ 2) � 1)
ct Vector of constants (dim¼ 3I � 1)
zt Vector of observations (dim¼O � 1)

wt State white noise sequence (dim¼ 3I�1)
vt Observation white noise sequence (dim¼ 3I � 1)

Matrices

Ft State transition matrix (dim¼ 3I � 3I)
Bt Control-input matrix (dim¼ (9Iþ 2) � (9Iþ 2))
H t Observation transformation matrix (dim¼ 3I � O)
Qt Covariance matrix of state noise (dim¼ 3I � 3I)
Rt Covariance matrix of observation noise (dim¼O �

O)
Pt State error covariance matrix (dim¼ 3I � 3I)

PU Input error covariance matrix (dim¼ (9Iþ 2) �
(9Iþ 2))

K t Kalman gain matrix (dim¼O � 3I)
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