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Summary 

This report describes a method to develop risk-informed future climate scenarios to 
support the SWP Delivery Capability Report (DCR). While previous DCRs have relied 
on a single climate scenario, the goal of this work is to better capture the range of 
uncertainty in SWP deliveries 20 years in the future due to climate change while 
maintaining the transparency and utility of the DCR for local planners. The 
approach combines top-down scenarios from global climate models (GCM) with 
bottom-up sampling of climate perturbations to create a response surface of 
system performance. A probability distribution fitted to the GCM scenarios is then 
applied to the response surface to estimate a distribution of system performance 
metrics and identify thresholds of concern, such as the 95% non-exceedance value.  

The proposed approach provides substantially more information about the range 
of potential future conditions than the previous approach, which provides mean 
and dry-year delivery estimates from the historical record and a single future 
climate scenario. This method has the advantage that it can inform stakeholder 
decisions based on different levels of risk aversion or alternate conceptions of 
climate uncertainty. The steps taken to estimate the probability of different levels of 
climate change and sea level rise are reasonable within the limitations of existing 
GCMs. The report is careful to note that the true probabilities of these changes are 
unknown, but that in order to estimate risk for stakeholders it is necessary to treat 
the GCM projections as independent samples from a distribution in the absence of 
other information. There are a few points where the use of climate change 
scenarios can be clarified, but in general the approach uses the best available 
information and combines the respective advantages of top-down and bottom-up 
methods to estimate climate risk. 

One point where the approach can be improved in future DCRs is the treatment of 
natural variability. Estimating the distributions of system performance metrics in 
the future depends on both the probability of climate change as well as natural 
variability. While the approach is thorough on the first point, the natural variability 
may be underestimated for several reasons, including averaging across climate 
realizations, averaging performance metrics across time, and applying 
perturbations to the historical record rather than using climate scenarios directly or 
generating synthetic sequences of weather and hydrology. All of these steps are 
justified in the context of the current DCR, and in some cases are specifically 
requested by stakeholders (e.g. the objective that the scenarios should follow the 
historical pattern of wet and dry years). However, they require that the historical 
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record contains an adequate sample of natural variability. These are areas that 
could be improved in the future to provide a more complete estimate of system 
risk. There is growing interest in this type of large ensemble approach, and the 
Working Group is well-positioned to take on this challenge. 

 

Charge Question 1 

Is the procedure developed by DWR appropriately documented? Is there anything 
missing from the documentation? 
 
The procedure is mostly clear. Two main points could be improved. First, while the 
stress test example using SAC-SMA and CalLite is well documented (Section 5.3), it 
could be more clear how this process will be integrated into the DCR using the 
planned CalSim 3 results. Aside from the VIC model described in Section 5.6, other 
aspects of the experiment may be different. As one example, the stress test results 
focus on the 8-River Index as an important system metric. However, the index does 
not require running CalLite or CalSim, so the metric(s) of interest for the DCR would 
likely be different. This may be a question of structure, as the results of the CalLite 
study are presented before the methods needed for CalSim. The section order may 
benefit from having a full description of the methods first, followed by example 
results from the CalLite study to show the benefits of the approach. 
 
Along these lines, it would also be helpful if the methods flowchart in Figure 5-2 
were revised to follow the order of the sections in the report. For example, the 
LOCA2 scenarios and distribution fitting are not listed in the flowchart, though they 
are implied in Step 2. Step 2 also indicates that the level-of-concern (i.e. system 
performance) is needed, but if I understand correctly, this requires running the 
system model first (Steps 4-6) unless a hydrologic metric such as the 8RI is chosen 
rather than a system performance metric. There could also be separate methods 
flowcharts in the report for the current and future DCRs to show how the approach 
may be further improved. 
 
The second main point to clarify is the use of the stochastic weather generator 
(WGEN) in this approach (Figure 5-2, Section 5.5, and throughout). As the report 
describes, the WGEN is a powerful tool that can create daily sequences of 
precipitation and temperature based on clustered weather regimes. However, the 
method is used in a limited way in this study. Three factors are used to perturb the 
historical hydrology: annual temperature change, annual precipitation change, and 
Clausius-Clapeyron scaling. These are statistical modifications of the observed 
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record with a physically-based justification, but they do not involve stochastic 
generation. Also, because the hydrology is aggregated to a monthly timestep, the 
Clausius-Clapeyron scaling may not be very influential. This is already documented 
in the report, and the use of the full WGEN is a focus for future work (Pg. 5-43). 
However, it should be clear throughout the report that the current DCR is not using 
synthetic scenarios. It would be useful to know what are the barriers to getting 
there, because the weather generator would provide a much more complete 
sampling of natural variability while matching the statistical properties of the 
observed precipitation (Najibi and Steinschneider, 2023). Page 5-3 indicates that 
stakeholders are gaining interest in this type of large ensemble approach. 
 
(Section 5.2) The approach of selecting LOCA2 scenarios, watershed averaging, and 
flow-weighted averaging to obtain a domain-wide average signal are clearly 
described. However, it is not clear why a domain-wide average is needed, other 
than the response surface. The spatial averaging is already mentioned as a 
limitation (Page 5-40 and Chapter 6) as it removed spatial variability. It would be 
useful to test the impact of this assumption, for example by checking the 
correlations between the projected climate change in each basin and the domain-
wide average. There does not seem to be a technical reason why the LOCA2 and 
WGEN scenarios could not be used to perturb the spatially distributed historical 
climate before aggregating, rather than after. 
 
(Section 5.3) It would be useful to know what drives the choice of SAC-SMA or VIC 
for these studies (accuracy, data availability, runtime), and to what extent this 
choice affects the selection of scenarios. The same question applies to the choice of 
system model, CalLite, CalSim, or WEAP. Appendix B shows that different 
combinations of these models have been used for recent climate change studies in 
California. 
 
(Section 5.2.5 and 5.3) More information about the choice of sample size would be 
helpful. This applies to both the sample from the bivariate distribution (10,000 
samples) and the sample size used to generate the response surfaces (Figure 5-12). 
This large sample size for the bivariate distribution is probably only needed if the 
weather generator is being used to develop new sequences of precipitation and 
temperature. If these samples are only used to perturb the historical record, a 
coarser sample is likely adequate because it is not sampling natural variability. Also, 
the resolution of the sample grid for the response surface may need to align with 
the choice of the sample size of the bivariate distribution, otherwise the response 
surface will be interpolated over a grid that may be too coarse. 
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(Section 5.6) It is not clear if the WGEN output in this section refers to the perturbed 
historical precipitation and temperature or synthetically generated traces planned 
for the future. In either case, Step 4-5 (perturbing the historical streamflow using 
the VIC output) may not be needed, because the potential bias in GCMs will have 
been avoided. 
 
(Section 5.6) The hydrology perturbation method involves monthly ratios of the 
future to historical GCM scenarios. Clarify whether this is the same process in the 
CalSim 3 report (Page 20-6), which involves monthly quantile mapping to better 
capture the extremes. 
 
 

Charge Question 2 

Does the procedure apply rational and defensible evidence for the steps taken and 
techniques used to capture the probability of projected changes related to climate 
and sea level rise? Why or why not? 
 
The report is careful to note that the GCM scenarios are not able to be placed in a 
probabilistic context (Page 5-2), because the true probabilities are unknowable. 
However, the method does require treating the GCMs as independent samples 
from a bivariate distribution. The goal is risk analysis, so the concept of probability 
is unavoidable. The focus on the term level-of-concern highlights this caveat. The 
method is not tied to a single estimate of climate uncertainty, but instead allows 
modifying the probability distribution with alternate conceptions of climate 
uncertainty (Section 5.4). It is possible that these estimates or scenarios could 
include other statistics of interest beyond the mean annual temperature and 
precipitation. 
 
The method is designed to estimate the probability distribution of system 
performance metrics under climate change. This requires identifying both the 
probability distribution of system performance in the absence of climate change, as 
well as the probability of different impacts of climate change. The first point relates 
to natural variability and a full understanding of system risk (Charge Question 3). 
The second point applies to this Charge Question. These two goals are sometimes 
at odds: identifying the probability of climate changes may require removing 
natural variability, but the probability of future water supply outcomes would need 
to include both climate change and natural variability.  
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The method captures the bivariate probability distribution of annual changes in 
mean precipitation and temperature, assuming that each GCM scenario is an 
independent sample from a Gaussian distribution. This is a reasonable assumption 
in the absence of other information. However, because the approach focuses on 
the annual average change, it may not directly capture the GCM-based probabilities 
of other climate changes that are important to water management such as the 
frequency and severity of droughts. Whether these differences are due to climate 
change or natural variability would be difficult to separate. The differences may be 
even more strongly influenced by other factors including the choice of GCM and 
downscaling method (Lafferty and Sriver, 2023). The impacts of climate change 
must be aggregated at some level, because as the report notes, providing 
thousands of scenarios to explore each dimension would be untenable for 
stakeholders. It could be tested whether perturbing the historical record with the 
mean precipitation and temperature will approximate the probabilities of changes 
in extremes that occur in the GCM scenarios with similar average properties. 
 
One minor unclear point is whether the Clausius-Clapeyron scaling factor should be 
included in the distribution fitting. It is part of the response surface experiment but 
does not seem to be assigned a probability from the GCMs. However, the influence 
is likely small for the monthly timeseries. 
 
Sea level rise is treated separately from regional climate using a defensible 
approach. The SLR estimates are restricted to near-term (before 2050) when there 
is higher confidence in the projections. The analysis assumes that the SLR scenarios 
and the climate scenarios are independent. If they were correlated (e.g., if the 
warmer local scenarios also lead to higher SLR) this may affect the estimates of the 
joint probability. Section 5.7 (Pg. 5-50) suggests that SLR within this projected range 
will likely have only a modest impact on near-term Delta operations relative to 
climate variability and change. 
 

Charge Question 3 

Do the new scenarios provide enhanced information for water users about 
potential future conditions and system reliability risks? If not, why?  
 
The proposed approach provides substantially more information about the range 
of potential future conditions than the existing DCR approach, which provides 
mean and dry-year delivery estimates from the historical record and a single future 
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climate scenario. The new scenarios can inform stakeholder decisions based on 
different levels of risk aversion or alternate conceptions of climate uncertainty. 
 
The approach is focused on system reliability risks due to climate change, which are 
reasonably captured within the limitations of GCM-based estimates of precipitation 
(Charge Question 2). However, there are several points in the methodology that 
remove or omit natural variability, which could result in underestimation of the full 
distribution of system risks: 
 

• The LOCA2 scenarios with only one realization are removed (Table 5-2) 
because of the difficulty in separating climate trend from variability. This is 
reasonable for the goal of estimating the probability of climate-driven 
changes by removing stochasticity (e.g. Page 5-20), but the most complete 
picture of system risk would include both the climate trend and the 
variability. 

 
• The climate changes are also separated from natural variability by taking a 

linear trend on the 30-year average precipitation. This may reduce the 
variance in the annual precipitation values in the perturbed historical 
scenarios relative to the GCM scenarios. This would not be an issue if the 
GCM variance is attributed to bias, but it could be tested. 

 
• The remaining GCMs are averaged across realizations before fitting the 

bivariate normal distributions (Page 5-15 Step 4). The result will represent the 
system risk level not exceeded by (e.g.) 95% of the sampled scenarios, but if 
the scenarios represent the average of 1-3 realizations, is it possible that this 
variability could change the estimate of the non-exceedance probability. 
Figure 5-7 is clear on this point. It shows that while the variance in 
temperature depends on the SSP, the variance in precipitation instead 
depends mainly on the choice of GCM and the realization. As a result, the 
distribution fitted without averaging the GCM realizations has a much larger 
variance in precipitation (not in temperature). Because the variance is not 
attributable to climate change, it is removed from the analysis.  
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• The variability in annual performance metrics is removed by averaging over 
time. For example, the CDF in Figure 5-15 shows the distribution of the 
expected 8RI over the scenarios, but it should be clarified that this is not an 
annual exceedance curve. In the context of the DCR, it could be useful to 
include both the distribution of expected changes averaged over time, as 
well as the distributions of the performance metrics over all years in the 
simulations. This would be consistent with the historical dry-year analysis 
currently included in the DCR, as well as other recent bottom-up climate 
studies of California water supply (e.g., Ray et al. 2020). Part of the difference 
might be that the scenario samples drawn from the probability distribution 
are used to find the expected value on the response surface, but if I 
understand correctly, they are not run through the system model to obtain 
the timeseries of performance metrics. 

 
The last points of the approach that may underestimate natural variability are the 
two perturbation steps. The sampled climate scenarios are first used to perturb the 
historical precipitation and temperature, and then the hydrologic model output is 
used to perturb the historical hydrology. The first part of the approach (perturbing 
precipitation and temperature) was developed for this study. It is justified in terms 
of stakeholder interpretability, and it is clear from Section 5.5 that expanding the 
set of stochastic precipitation and temperature scenarios is a priority for future 
DCRs. The second part of the approach (perturbing hydrology) comes from past 
CalSim studies (Appendix B, and Charge Question 4) so it is a bit outside the scope 
of the review, but it has been a critical step in many other climate change studies. 
 
Analyzing only the historical sequence of drought events with perturbation 
methods will likely omit some of the natural variability within and across GCM 
scenarios. This would also almost certainly be the case for scenarios created by the 
weather generator if they are used in future DCRs. For example, Najibi & 
Steinschneider (2023) show a wider range of extreme drought events from the 
WGEN, even in a stationary scenario without climate perturbations. Figure 11 shows 
results for the Tuolumne watershed, where the minimum precipitation over 1-10 
year periods decreases by 15-25% when sampling a stationary 1000-year record 
compared to the 100-year observed record. This is larger than the decrease in the 
GCM realizations in this report (Figure 5-7), as well as the range of scenarios tested 
for the response surface (Figure 5-12). This approach comes with the caveat of 



 10 

extrapolating extreme events from a shorter observed record to a longer synthetic 
record, but it aims to do so in a physically-based way. This point underscores the 
importance of natural variability in the risk to deliveries.  
 
For this report, it would be helpful to add a discussion of the reasons for 
maintaining the perturbation steps in the current approach, as well as what 
improvements in the scenario modeling chain would need to be achieved before 
their ensemble output could be used directly in CalSim 3. It could also be useful to 
see how the stress test results, for example the response surface (Figure 5-12) and 
CDF (Figure 5-15), would change if a different climate scenario were used in place of 
the historical record, or if all GCM realizations were included in the distribution 
fitting. In both cases it might be anticipated that the distribution of system 
performance would have a larger variance, which could affect the calculation of the 
95% level-of-concern for the 8-River Index and other metrics. 
 
In future DCRs if the WGEN scenarios are generated to create the response surface, 
even a large sample of natural variability would likely be averaged out by the 
interpolation step. There could be two ways around this: either use the WGEN to 
generate scenario samples directly from the bivariate distribution and run them 
through the systems model (if computation allows), or create the response surface 
using both the mean and variance to represent natural variability. This comment 
would only apply to future work where the WGEN is used to create new sequences 
of precipitation and temperature. 
 
A last point relates to the choice of system performance metric to determine risk. In 
the stress test example using SAC-SMA and CalLite, the April-July 8-River Index (8RI) 
was chosen as the key metric by stakeholders. The report mentions many good 
reasons for this choice, but I would also expect it to be very sensitive to snowpack 
decline—for example, if the same amount of annual precipitation falls as rain 
during November-March, it would not be included in this metric, but would still 
provide water supply. The interpretation would be different if a lower 8RI occurs 
because of earlier runoff versus less total runoff. Using the annual 8RI instead 
would provide the same advantages while avoiding this issue. 
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The 8RI performance metric only requires running the hydrologic models but does 
not require running CalSim/CalLite. This would not be the end goal of the DCR, but 
it could allow wider explorations of the scenario space because it would not require 
creating all of the CalSim inputs via the perturbation method. This is another 
advantage of the metric that could be included in the documentation, that it can be 
used to select level-of-concern scenarios without running the system model for 
each sampled scenario. 
 

Charge Question 4 

Is this procedure an improvement over other previously used approaches to 
climate scenario selection/development? Why or why not?  

Previous DCRs provide delivery estimates for the historical scenario and a single 
perturbed future climate scenario. The larger set of scenarios developed in this 
approach is a significant improvement as it provides a more complete 
representation of uncertainty and leverages the new LOCA2 scenarios. The 
approach is also an improvement over previous top-down studies of California 
water supply under climate change (Appendix B) because it provides a full response 
surface of system performance over a range of potential future changes, 
recognizing that these are uncertain. The approach is in line with previous bottom-
up studies. Finally, this method uses a climate period approach rather than a 
transient approach, which allows estimated future conditions at any time to be 
applied uniformly either to the historical record or to a synthetically generated 
record of a chosen length. 

While the scenario selection and generation tools (LOCA2 and WGEN) are state of 
the art, their application here is limited to perturbing the historical record. As a 
result, the scenarios used to evaluate the distribution of system risks will likely 
underestimate natural variability. The climate perturbation step is discussed above. 
The hydrology perturbation step has been used in many past CalSim studies (Figure 
5-2, Step 5), but it is not clear that it is needed in this method.  

The reasons for using the perturbation approach include potential biases in the VIC 
model (Section 5.6). The CalSim 3 report (Page 20-5) mentions biases in the GCMs 
as the main reason for this approach. It is true that the GCM interannual variability 
and mean annual precipitation have been shown to be biased in the past (Persad et 
al., 2020), though this may be improving in the LOCA2 scenarios with updated bias 
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correction methods (Pierce et al., 2023). However, the method developed in this 
report does not run GCM scenarios through the hydrologic model. Instead, they are 
used to fit a distribution, from which many samples of synthetic weather can be 
sampled, either by perturbing the historical climate or generating novel sequences 
from the WGEN. In both cases the GCM bias issue may be avoided—for example, 
the WGEN provides a good match to the observed annual mean and standard 
deviation of precipitation (Figure 8 of Najibi & Steinschneider, 2023). It would be 
useful for the report to include a discussion about whether this could eliminate at 
least the step of perturbing the hydrology. If biases remain in the VIC model, rather 
than perturbing the historical hydrology, it may be preferable to recalibrate or 
switch to a different hydrologic model such that the output could be used directly in 
CalSim. An additional possible reason for keeping the perturbation strategy is that 
direct hydrologic model output could create difficulties for the CalSim solver if 
constraints that were tailored to the historical record become infeasible. If this is 
the case, it should be discussed as well. 

 

Charge Question 5 

Are there specific investigations or improvements that should be undertaken in 
future updates of this approach or use of this procedure to develop additional 
scenarios at time periods further into the future?  
 
The report focuses on a 20-year horizon (2043), which is a good compromise that is 
both a long enough planning horizon for municipal and agricultural water users, 
but also sufficiently near-term that model projections have a narrower range of 
uncertainty. A longer horizon would require navigating a higher degree of 
uncertainty in sea level rise projections (Figure 5-19) and their influence on Delta 
operations. This includes not only the uncertainty in global sea level rise, but also 
uncertainty in how these changes may lead to salinity intrusion in the Delta. It 
would also introduce much more uncertainty in regulations and infrastructure, and 
may require estimating how system operations are likely to adapt to different 
degrees of climate change. On the other hand, a higher degree of uncertainty in the 
annual temperature and precipitation would be straightforward to incorporate into 
the existing method, because the system response surface will already have been 
created. The method would not be developing additional scenarios, but instead 
conditioning the distribution of system risk on a different timeframe of GCM 
projections. However, this additional uncertainty in precipitation would likely be 
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driven by the choice of GCM and realization rather than the degree of climate 
change (as shown in Figure 5-7). Rather than projecting further into the future, 
more fully capturing natural variability in the present would serve the near-term 
goal of estimating delivery risks for stakeholders. 
 

Additional Comments 

(Page 5-2, 5-3) The comparison of top-down and bottom-up methods states that 
top-down scenarios cannot be placed in a probabilistic context, but bottom-up 
approaches can provide probabilistic information. This description does not align 
with the proposed approach, which uses top-down GCM scenarios to estimate a 
probability distribution and bottom-up methods to sample a large number of 
scenarios from that distribution. In other words, the bottom-up methods by 
themselves do not generate probabilistic information. Estimating a probability 
distribution from GCMs is imperfect but reasonable in the absence of other 
information. This is not an issue for the approach as long as appropriate caveats 
are included—for example, as in Section 5.2.5. I suggest summarizing the same 
points in the introduction to avoid confusion about the analysis of probabilities.  
 
(Figure 5-2) Clarify that the Weather Generator is only partially used here to scale 
the historical climate data, not to generate new sequences of weather, as may be 
done in future DCRs. 
 
(Figure 5-3) Clarify that the method averages the LOCA2 scenarios over the major 
watersheds, not the HUC8s. 
 
(Page 5-12 Line 4) It is clear how the domain averages are performed, but more 
explanation of why this step is needed would be helpful. 
 
(Page 5-15, Step 1) Clarify that the 30-year average is taken on the annual 
precipitation data, not the original monthly data. 
 
(Page 5-22 Lines 7-9): The references to left/right figure panels are switched. 
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(Page 5-22 Line 20, and Figure 5-8) Clarify that the SSP-driven change is increasing 
variance between GCMs, not increasing interannual variance in precipitation. The 
result shows that higher SSPs create more disagreement between GCMs. 
 
(Figure 5-9 and 5-10) The comparison between LOCA2 and IPCC WG1 precipitation 
change is useful, but the validation of LOCA has been done in more detail in 
publications and is a bit outside scope here. Because the IPCC data is not quite the 
same geographic region, the comparison is challenging and could be omitted. 
 
(Figure 5-13) This is a local sensitivity analysis that depends on the choice of the 
points on the response surface from which the changes are estimated. The results 
make sense, but this choice should be clarified. 
 
(Page 5-42) Scenarios are perturbed using three factors: average precipitation, 
average temperature, and Clausius-Clapeyron scaling. But because the scenarios 
are not a full factorial sample of these three factors, it is difficult to understand 
which combinations are selected and why. If possible it would be helpful to include 
the scenarios figure from the WGEN report to clarify this (Figure 4 from Najibi & 
Steinschneider 2023). 
 
(Table B-3) Clarify whether these previous bottom-up studies used synthetic 
weather generation or the current approach of perturbing the historical climate. 
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