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Appendix F, Life Cycle Analyses 

Attachment F.5 Delta Smelt Life Cycle Model 

with Entrainment (LCME) 

F.5.1 Delta Smelt 

F.5.1.1 Delta Smelt Life Cycle Model with Entrainment 

Polansky et al. (2021) developed a hierarchical stage-structured state-space life cycle model for 

Delta Smelt to identify factors with the strongest statistical support for having influence on the 

species’ recruitment and survival. This modeling approach is useful as an ecological modeling 

tool because it can separate descriptions of state and observation processes and permit the 

integration of disparate data sets. This Delta Smelt life cycle model was later expanded from four 

to seven life stages with a component that separately describes the entrainment process at the 

Sacramento–San Joaquin Delta (Delta) export facilities (Smith et al. 2021). This model produces 

expected values for larval recruitment and survival at the subsequent life stages. The most 

statistically supported model variant in Smith et al. (2021) used means of December-June Old 

and Middle River (OMR) values and June-August outflow aggregated from monthly values or 

longer timescales; therefore, CalSim output for the scenarios/alternatives can be directly 

incorporated into the model framework. The most statistically supported model in Smith et al. 

(2021) also included food/prey metric term during the months of January to March. By using the 

relationship between zooplankton density and salinity, CalSim-predicted X2 values were then 

used to estimate the expected change in the food/prey metric for January-March months across 

alternatives. Reclamation used this model to calculate expected annual population growth rate (λ; 

the abundance of current year divided by abundance from previous year) for alternative flow 

scenarios by using CalSim output and subsequent zooplankton model. The metric of interest will 

be geometric mean of λ for a specified time frame (e.g., 1995-2015), which will be compared 

across alternatives. For the purpose of this text, Smith et al.’s (2021) model will be referred to as 

the Delta Smelt Life Cycle Model with Entrainment (LCME). 

F.5.1.1.1 Methods, assumptions 

The Delta Smelt LCME was run based on flow inputs from CalSim 3. The approach followed the 

Collaborative Science and Adaptive Management Program (CSAMP) Delta Smelt Structured 

Decision Making (SDM) process, where historical years (1995-2015) were adjusted according to 

a CalSim 3 scenario and the geometric mean λ was calculated for each scenario. There is an 

expectation that zooplankton abundance (i.e., prey item for Delta Smelt) would change based on 

flow (Kimmerer and Rose 2018), and as such, a zooplankton submodel constructed for the Delta 

Coordination Group and CSAMP Delta Smelt SDM was applied to the CalSim 3 scenarios. For 

the zooplankton term, upper and lower 95% confidence intervals were calculated and applied 

into the analysis to better understand sensitivity of the model output to variation in zooplankton 
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abundance. We did not update any other model inputs (turbidity, temperature, and predators) due 

to the complexity and lack of predictive models associated with the other values. Furthermore, it 

is unclear whether flow changes at a project operations scale meaningfully affect the functioning 

of the Bay-Delta food web. What is of interest in this analysis is to determine how much the 

expected long-term abundance of delta smelt might change based on the proposed changes in 

water management. 

Main model 

Monthly flow data were pulled from CalSim 3 dss files through R and were summed or averaged 

depending on the variables for the LCME. OMR flow variables were either extracted directly 

from CalSim 3 as monthly average value in cfs, or averaged if the timespan covers two months 

(Table F.5-1). The sum of Delta outflow from June to August were calculated by multiplying the 

CalSim 3 predicted monthly Net Delta Outflow Index (NDOI-ADD + NDOI-MIN) by the 

number of days for each month and then added together. The total values in cfs per day were 

then converted to acre-feet (1 cfs = 1.983 acre-feet per day). Methods and findings of the original 

application of LCME can be found in Smith et al. (2021). The list of LCME flow variables that 

were acquired from the CalSim 3 runs can be found in Table F.5-1. R script and data used for the 

model can be found at (https://github.com/BDO-Science/DeltaSmelt_LCM). 

Table F.5-1. List of covariates used in LCME that were replaced with values from CalSim 

3 for each alternative.  

Life stage Covariate Unit Covariate summary details 

Early post-larval 

(May) 

April-May OMR flow cfs Mean of the daily sum of tidally filtered flows in the 

OMRs during April to May 

Late post-larval 

(June) 

June-August Outflow af Sum of the volume of water moving past a point 

near the confluence of the Sacramento and San 

Joaquin rivers, near Pittsburg, California, during 

June to August 

Late post-larval 

(June) 

June OMR flow cfs Mean of the daily sum of tidally filtered flows in the 

OMRs during June 

Early subadult 

(October-November) 

December-January 

OMR flow 

cfs Mean of the daily sum of tidally filtered flows in the 

OMRs during December to January 

Late subadult 

(January-February) 

February OMR flow cfs Mean of the daily sum of tidally filtered flows in the 

OMRs during February 

Early adult (March) March OMR flow cfs Mean of the daily sum of tidally filtered flows in the 

OMRs during March 

OMR = Old and Middle River; cfs = cubic feet per second; af = acre-foot. 

The Old and Middle River covariates imply entrainment as the mortality mechanism (Smith 2019; Smith et al. 2020). 

The Delta outflow covariate implies foraging habitat suitability as a suite of mechanisms that align better when 

outflow is elevated (Smith and Nobriga 2023). The covariates are listed in the order they affect a given cohort in the 

model. 

https://github.com/BDO-Science/DeltaSmelt_LCM
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Assumptions related to the model calibration and new flow inputs 

The LCME was parameterized using OMR) flow values derived from the USGS gages and Delta 

Outflow estimates from DAYFLOW (https://data.cnra.ca.gov/dataset/dayflow), which may differ 

to some extent with how CalSim 3 calculates these values (OMR and Delta Outflow). 

The LCME separately accounts for the influence of OMR and turbidity on delta smelt 

entrainment. However, the CalSim 3 runs had assumptions built into them about how frequently 

turbidity triggers that affect OMR would occur. This confounds the turbidity effect on 

entrainment with the OMR effect in a way that the LCME cannot account for. This may lead to a 

negative bias in the predicted effect of entrainment; in other words, it may be underestimated 

somewhat. 

The only flow data included in the published LCME (Smith et al. 2021) are OMR and June-

August Delta Outflow. In essence, the LCME assumes that these are the most influential flow 

variables associated with Delta Smelt recruitment and survival. This assumption was supported 

by Polansky et al. (2021), which is why these flow variables were carried forward and re-tested 

in the Smith et al. (2021) model. 

This analysis consisted of the years 1995 to 2015, so it is unclear how representative model 

predictions of Delta Smelt population trajectory will be when simulating scenarios that include 

environmental conditions outside the range of observations the model was fit to. In addition, it is 

unclear how model parameter estimates and predictions of Delta Smelt population may be 

affected by climate change impacts and the ongoing and proposed supplementation efforts. 

Zooplankton model 

To calculate zooplankton abundance/density changes related to changes in flow associated with 

the CalSim 3 scenarios, Reclamation leveraged the zooplankton abundance estimation process 

used in the CSAMP Delta Smelt SDM group. To replicate the zooplankton abundance 

calculation used in the CSAMP Delta Smelt SDM process, estimated X2 values for each month 

were first retrieved from CalSim 3 dss files. These monthly X2 values were then converted into 

salinity values for each region defined in the Delta Smelt Individual-Based Model (IBM) (Rose 

et al. 2013) using a generalized linear model developed by Compass (see Attachment 1, Maunder 

and Deriso Revised Model). 

Similar to the CSAMP Delta Smelt SDM process, Generalized Additive Models (GAMs) were 

constructed to predict the zooplankton density Delta Smelt were expected to spatially overlap 

with given a salinity level for each IBM region and zooplankton taxon (see Attachment 2, CVPIA 

Winter-Run and Spring-Run Life Cycle Models). Predictor variables for each GAM were the 

tensor product smooth of the interaction between salinity and day of year, as well as random 

effects for year and station (when more than one station exists in the dataset). To produce the 

monthly model output, the 15th of each month was used as the data input. 

https://data.cnra.ca.gov/dataset/dayflow
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Once salinity values were calculated for each Delta Smelt IBM region, month, and scenario, 

expected zooplankton densities were then estimated for every zooplankton taxon, month, region, 

and scenario using output from the GAMs. Upper and lower 95% confidence intervals from 

these predictions were calculated through 1,000 independent draws from the model distribution, 

similar to a bootstrapping process. Just as was done in the CSAMP Delta Smelt SDM process, 

for each alternative, the initial output was scalar values of the taxa-specific zooplankton density 

under the particular management conditions divided by the same prediction under 

baseline/historical conditions. However, because 0 values were present in the baseline, it resulted 

in infinite values for the scalar calculations. These infinite values were replaced with the 

maximum finite scalar calculated from model predictions for a specific alternative, taxon, region, 

and month (across years). When this step still yielded no finite scalar value, the maximum finite 

scalar value from a given alternative, taxon, and month was used instead. 

Because the Delta Smelt IBM and LCME differ in how regions are defined and how zooplankton 

taxa are grouped, additional conversions were needed. The Delta will continue to be managed as 

a freshwater ecosystem (i.e., not expected to vary much in terms of salinity) in the near future, 

and as such, any IBM regions upstream of the Confluence were ignored, and likewise LCME 

North and South regions were left as is (Figure F.5-1). The Far West LCME region only 

overlapped with the SW Suisun IBM region and thus, the SW Suisun IBM region results were 

used to define zooplankton changes in the Far West LCME region. To calculate zooplankton 

changes in the West LCME region, the following IBM regions were used: NW Suisun, NE 

Suisun, SE Suisun, Suisun Marsh, and the Confluence. Results from the five IBM regions within 

the West LCME region were aggregated by multiplying each IBM region’s value with the 

proportion of the region’s water volume relative to the total water volume across all five regions. 

The calculations were as follows: 

• Far West LCME region: SW Suisun IBM region (Figure F.5-1) 

• West LCME region: (Confluence IBM region x 0.233) + (Suisun Marsh IBM region x 

0.174) + (NE Suisun IBM region x 0.110) + (SE Suisun IBM region x 0.220) + (NW 

Suisun IBM region x 0.264) 
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Figure F.5-1. Map of the San Francisco Bay-Delta with LCME regions shown in black 

(top) and IBM regions shown in red (bottom). 
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The LCME uses aggregate zooplankton biomass per volume values calculated by summing a 

number of different zooplankton species and life stages (see Attachment 3, CVPIA Winter-Run 

Life Cycle Model), whereas IBM taxa were more specific, often down to species. Therefore, the 

proportion of each zooplankton taxa that make up the aggregate zooplankton groups in the 

LCME data input had to be first estimated for each month and LCME region using raw data 

provided by the primary authors of the LCME (“ZooMysid_74_19_df.csv”). Using these 

proportions, the final scalar multiplier values were acquired for the Far West and West LCME 

regions and zooplankton aggregate groups. In other words, the multiplier scalar values were 

applied based on the proportion of the particular taxon that make up the prey biomass for a given 

month and LCME region. For example, if Pseudodiaptomus forbesi adults are expected to be 

twice as abundant and Eurytemora affinis adults are expected to be three times as abundant under 

an alternative, and the two species make up 50% of the biomass each, the final multiplier scalar 

values will be 2.5 (i.e., [2 x 0.5] + [3 x 0.5]). 

These final scalar multipliers were then applied to the LCME aggregated zooplankton dataset 

(“ZooMysid_74_19_df_median.csv”) for the median estimate and the lower and upper 95% 

confidence interval values (Figure F.5-2). These predictions were then capped at the maximum 

value that was observed in the LCME aggregated zooplankton dataset 

(“ZooMysid_74_19_df_median.csv”) for the region and month using only data from 1995 to 

2019. Lastly, the prey covariates (see Table F.5-3) were acquired by calculating the mean across 

the four LCME regions. 
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Table F.5-2. List of taxa analyzed using GAM and the equivalent LCME taxa used to 

calculate the proportion of each taxon that make up the prey biomass at a given month 

and LCME region. 

GAM response 

variable Taxon definition 

LCME taxon used to calculate proportion of prey biomass 

for each month and LCME region 

acartela Acartiella sinensis 

(copepod) adults 

Acartiella sinensis (copepod) adults 

eurytem Eurytemora affinis 

(copepod) adults 

Eurytemora affinis (copepod) adults 

pdiapfor Pseudodiaptomus forbesi 

(copepod) adults 

Pseudodiaptomus forbesi (copepod) adults 

othcalad Other calanoid copepod 

adults 

Other calanoid adults + Sinocalanus doerrii (copepod) 

adults 

othcaljuv Other calanoid 

copepodites 

Calanoid copepodids + Other calanoid copepodids + 

Eurytemora affinis copepodids + Sinocalanus doerrii 

copepodids + Pseudodiaptomus spp. Copepodids + 

Acartiella sinensis copepodids + Acartia spp. Copepodids + 

Diaptomidae copepodids + Tortanus spp. copepodids 

limno Limnoithona spp. 

copepods (all stages) 

Limnoithona spp. + Limnoithona sinensis + Limnoithona 

tetraspina 

othcyc Other cyclopoid copepods 

(all stages) 

Acanthocyclops vernalis 

allcopnaup Copepod nauplii (all spp.) Copepod nauplii + Other copepod nauplii + Eurytemora 

affinis nauplii + Sinocalanus doerrii nauplii + 

Pseudodiaptomus spp. nauplii 

daphnia Daphnia spp. 

(cladocerans) 

Daphnia spp. (cladocerans) 

othclad Other cladocerans Bosmina longirostris + Diaphanosoma spp. + Other 

cladocera 

other All other taxa N/A (model was not used) 

mysid Hyperacanthomysis 

longirostris 

Hyperacanthomysis longirostris + Neomysis mercedis 

As zooplankton covariates for natural mortality were only supported for adult life stages (Smith 

et al. 2021), only zooplankton modeling results from the months of February and March were 

used as data input for the LCME (Table F.5-3). In other words, a flow effect on delta smelt’s 

food supply is only supported statistically in February-March. The most parsimonious 

mechanistic explanation is that prey available to adult fish early in the spawning season had a 

population-scale effect, perhaps by affecting how many eggs could be produced or affecting how 

many adults survived to spawn a second time. R script and data used for the salinity and 

zooplankton models can be found at (https://github.com/BDO-Science/DeltaSmelt_LCM). 

https://github.com/BDO-Science/DeltaSmelt_LCM
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Figure F.5-2. Summary of steps taken to generate estimates of the zooplankton prey 

density metric for each alternative. 

Table F.5-3. List of covariates used in LCME that were replaced with new values based on 

CalSim 3 and zooplankton model for each alternative.  

Life stage Covariate Unit Covariate summary details 

Late subadult 

(January-

February) 

Food metric 

for February 

Microgram 

carbon per 

meter3 

Mean carbon-weighted density of adult calanoid 

copepods, cyclopoid copepods, cladocerans, and mysid 

shrimp observed during February zooplankton surveys 

Early adult 

(March) 

Food metric 

for March 

Microgram 

carbon per 

meter3 

Mean carbon-weighted density of adult calanoid 

copepods, cyclopoid copepods, cladocerans, and mysid 

shrimp observed during March zooplankton surveys 

The mechanism implied by these prey density covariates is related to food limitation of adult spawners that may 

affect the number or quality of eggs produced or the number of repeat spawns the fish are able to complete before 

dying. 
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Assumptions related to the model calibration and new flow inputs 

The zooplankton modeling workflow used salinity to estimate changes in zooplankton biomass 

related to flow. There are several mechanisms by which a correlation between flow and 

zooplankton biomass may arise that are not based on salinity per se such as transport from 

upstream, estuarine circulation, etc. 

The use of salinity as a covariate also meant that predicted zooplankton biomass at a particular 

region is static anywhere and everywhere salinity is ≤0.1 ppt salinity, even with additional Delta 

outflow. 

The original purpose of the salinity and zooplankton modeling was to adjust zooplankton data 

input for the Delta Smelt IBM (Rose et al. 2013; Kimmerer and Rose 2018). As such, there were 

limitations when the data were converted for the purpose of Delta Smelt LCME (e.g., some 

missing species and/or life stages in the aggregate LCME zooplankton groups). 

F.5.1.1.2 Results 

The general statistical prohibition against extrapolation suggests that model predictions are more 

uncertain when explanatory variables are outside the range of observations to which the model 

was fit. To visually inspect when the predicted flows and food were outside the 

observed/empirical range for the LCME, output from CalSim 3 and the zooplankton model were 

plotted against the empirical data (i.e., data used to estimate parameters in the LCME). See 

Figure F.5-3 through Figure F.5-5 below. Most CalSim-predicted flows and zooplankton 

predictions were not outside the range of observations to which LCME was fit, but some 

alternatives did include out-of-range values. EXP1 included much lower June-August Delta 

Outflows than observed and higher (more positive) OMR values than observed in some years. 

EXP3 OMR values were similar to EXP1, but EXP3 June-August Delta Outflows were within 

the observed range. Alt1, the components of Alt2, and Alt4 contained some April-May OMR 

values that were more negative than the observed range. Alt1 also contained OMR values more 

negative than the observed data for the months of December-January and March. Overall, 

CalSim-predicted June-August Outflow values were generally lower than the DAYFLOW 

estimates under Wet or Above Normal years (Figure F.5-3, Figure F.5-6). Predicted prey 

biomass for all alternatives was within the observed range (Figure F.5-5). However, for certain 

years higher prey biomass than the empirical data were predicted for all alternatives (Figure 

F.5-3). As a result, mean predicted prey biomass across all alternatives were also higher than the 

observed data (Figure F.5-5 through Figure F.5-7). 



F.5-10 

 

From top to bottom: June-August sum of Delta outflow, February, and March prey metric (biomass per 

volume) data composed of adult copepods, cladocerans, and mysids. Note that the x-axis represents Delta 

Smelt cohort year (e.g., February and March prey metric for cohort year 2012 represents data for February 

and March of 2013). 

Figure F.5-3. Annual time series of outflow and prey metric data based on CalSim3 data 

and salinity-zooplankton model relative to the original dataset used to build the Delta 

Smelt LCME (labeled as “Empirical”).  
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 February and March OMR values for cohort year 2012 represents data for February and March of 2013. 

Figure F.5-4. Annual time series of monthly average OMR flow data for input to the 

LCME produced from CalSim3 relative to the original LCME dataset (labeled as 

“Empirical”).  
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Figure F.5-5. Box plot of covariate values for cohort year 1995 to 2015 sorted by 

alternative. 
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Note that cohort year was matched with the water year that the cohort was born in (e.g., cohort year 1995 

= water year 1995). 

Figure F.5-6. Mean covariate values used in the LCME for Wet and Above Normal year 

types.  
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Note that cohort year was matched with the water year that the cohort was born in (e.g., cohort year 1995 

= water year 1995). 

Figure F.5-7. Mean covariate values used in the LCME for Below Normal, Dry, or Critically 

Dry year  
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Estimates of population growth rate (λ; the abundance of current year divided by abundance from 

previous year) are provided for each cohort year and alternative (Table F.5-4; Figure F.5-8). 

Generally, dry years showed lower geometric mean λ than wet years (Table F.5-5), and wet years 

occurred with greater frequency at the beginning of the time series (1995-1999) compared to the 

end of the time series (2006-2015). 

Summarized across all years by calculating the geometric mean of λ for the full 21-year time 

series (1995-2015), predicted flow and zooplankton conditions associated with EXP3 resulted in 

the highest mean λ, followed by Alt3 (Figure F.5-9). Meanwhile predicted conditions associated 

with Alt1 resulted in the lowest value of mean λ. All other alternatives resulted in mean λ 

between 0.95 and 0.97 (Table F.5-5). Relative to the no action alternative (NAA), Alt3 and 

EXP3 mean projected λ were the highest among all alternatives, and Alt1 was the lowest (Figure 

F.5-9). Decomposition of mean λ into time series plots of % change of population growth rate for 

a given alternative divided by the population growth rate of NAA demonstrated that EXP3- and 

Alt3-projected λ were greater than NAA in most years (Figure F.5-8). Alt1 projections differed 

from NAA primarily in the first half of the time series (1995-2005) and were very similar to 

NAA projections in the latter half of the time series (2006-2015). EXP1-projected λ were 

relatively greater than NAA in wet years, but less than NAA-projected λ in all other years. 

NAA, the various versions of Alt2, and Alt4 performed similarly to the empirical data. While 

these CalSim-generated scenarios/alternatives resulted in higher λ than the empirical data during 

dry years, they also resulted in lower λ than the empirical data during wet years (Table F.5-5). 

The CalSim-generated scenarios/alternatives (NAA, the various versions of Alt2, and Alt4) may 

have produced higher λ during dry years due to the more positive OMR values for multiple 

months and higher zooplankton estimates in February (Figure F.5-6). Meanwhile, these same 

CalSim-generated scenarios/alternatives (NAA, the various versions of Alt2, and Alt4) may have 

produced lower λ than the empirical data during wet years because of the lower June-August 

Delta Outflow values and more negative OMR values for certain months (Figure F.5-7).
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Table F.5-4. Predicted population growth rate (λ; abundance of current year divided by abundance from previous year) for 

each cohort year by alternatives.  

Year Empirical Alt1 

Alt2v1 

wTUCP 

Alt2v1 

woTUCP 

Alt2v2 

noTUCP 

Alt2v3 

noTUCP Alt3 Alt4 EXP1 EXP3 NAA 

Sacramento Valley 

Water Year Index 

1995 3.56 1.63 1.78 1.79 1.80 1.78 2.25 1.84 4.25 4.05 1.86 Wet 

1996 1.37 0.66 0.64 0.64 0.65 0.65 1.06 0.64 1.04 1.27 0.73 Wet 

1997 0.68 0.38 0.56 0.57 0.57 0.57 0.78 0.59 0.57 0.99 0.59 Wet 

1998 4.78 1.75 1.70 1.67 1.68 1.68 3.03 1.73 5.15 4.88 1.82 Wet 

1999 0.79 0.56 0.69 0.70 0.68 0.70 0.89 0.69 0.94 1.27 0.79 Wet 

2000 0.69 0.45 0.83 0.83 0.88 0.89 0.81 0.78 0.79 1.17 0.90 Above Normal 

2001 0.11 0.12 0.30 0.30 0.33 0.34 0.50 0.30 0.32 0.53 0.31 Dry 

2002 0.55 0.68 0.94 0.96 1.04 1.03 1.24 0.94 0.69 1.16 0.93 Dry 

2003 0.87 0.71 1.45 1.46 1.54 1.54 1.58 1.45 1.36 2.12 1.51 Above Normal 

2004 0.44 0.46 0.84 0.84 0.87 0.87 0.97 0.83 0.53 0.91 0.87 Below Normal 

2005 1.94 1.04 1.27 1.27 1.34 1.36 1.58 1.28 2.66 2.85 1.31 Above Normal 

2006 3.37 2.04 2.31 2.35 2.40 2.45 2.58 2.29 3.34 3.67 2.41 Wet 

2007 0.51 0.33 0.57 0.57 0.58 0.57 0.83 0.53 0.46 0.77 0.57 Dry 

2008 0.95 1.00 1.10 1.10 1.17 1.18 1.50 1.07 0.70 1.11 1.09 Critically Dry 

2009 0.64 0.45 0.68 0.68 0.68 0.67 0.76 0.66 0.54 1.02 0.67 Dry 

2010 1.26 1.31 1.45 1.45 1.47 1.43 1.66 1.46 1.87 1.97 1.48 Below Normal 

2011 3.65 3.14 3.26 3.24 3.24 3.25 3.13 3.28 5.57 5.47 3.23 Wet 

2012 0.95 0.74 0.98 0.99 1.00 1.00 1.15 1.00 0.67 1.10 1.02 Below Normal 

2013 0.90 0.87 0.88 0.88 0.87 0.86 1.04 0.87 0.50 0.83 0.87 Dry 

2014 0.43 0.43 0.48 0.52 0.51 0.52 0.71 0.46 0.38 0.57 0.47 Critically Dry 

2015 0.66 0.65 0.56 0.63 0.63 0.63 0.74 0.56 0.41 0.60 0.56 Critically Dry 

Empirical indicates the observed data used by the LCME. 
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Table F.5-5. Geometric mean of predicted population growth rate (λ) across all years and binned into wetter and drier 

years for all alternatives.  

Category Alt1 

Alt2v1 

woTUCP 

Alt2v1 

wTUCP 

Alt2v2 

noTUCP 

Alt2v3 

noTUCP Alt3 Alt4 EXP1 EXP3 Empirical NAA 

1995-2015 0.72 0.95 0.94 0.98 0.98 1.20 0.94 1.01 1.41 0.96 0.97 

Below Normal, Dry, or 

Critically Dry years 

0.54 0.75 0.74 0.77 0.77 0.95 0.72 0.57 0.90 0.58 0.74 

Wet and Above 

Normal years 

0.98 1.24 1.24 1.27 1.28 1.55 1.25 1.91 2.32 1.68 1.32 

Empirical scenario indicates the LCME fit to observed data, while all alternative models represent simulations using CalSim output.
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Bottom: Line plot showing % change calculated as λ for a given alternative divided by estimated 

population growth rate for NAA (no action alternative); no change from NAA = 100. Note the color 

change for NAA in the bottom figure. 

Figure F.5-8. Annual time series of delta smelt population growth rate. Top: Line plot of 

population growth rate (λ) across alternatives as seen in Table F.5-4. 
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Bottom: Bar plot demonstrating the relative difference in geometric mean of population growth rate 

(1995-2015) for each alternative compared to the no action alternative ([𝜆𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 − 𝜆𝑛𝑜 𝑎𝑐𝑡𝑖𝑜𝑛]/ 

𝜆𝑛𝑜 𝑎𝑐𝑡𝑖𝑜𝑛). Negative numbers indicate alternatives that result in poorer conditions for delta smelt and 

positive numbers indicate alternatives that are predicted to improve conditions. 

F.5.1.1.3 Figure F.5-9. Mean population growth rates aggregated across the years. Top: 

Bar plot demonstrating the geometric mean of population growth rate (lambda) 
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from 1995 to 2015 for the various alternatives as seen in Table F.5-4.Key 

Takeaways 

• Geometric mean of population growth rate from 1995 to 2015 only showed considerable 

differences from the observed data and/or NAA for EXP3, Alt1, and Alt3 scenarios, 

where EXP3 and Alt3 performed better than most scenarios/alternatives (i.e., higher λ) 

and Alt1 performed worse than most alternatives (i.e., lower λ). 

• EXP3 and Alt3 scenarios likely produced in higher λ due to more positive OMR flows for 

most months and the relatively high June-August Delta Outflow during dry years (Figure 

F.5-5, Figure F.5-6). 

• Alt1 scenario likely produced lower λ relative to most scenarios due to the more negative 

OMR flows during most months (Figure F.5-5, Figure F.5-6). 

• NAA, all components of Alt2, and Alt4 did not produce considerably higher λ than the 

empirical data despite OMR restrictions that should reduce entrainment. This may be due 

to the apparent trade-off between OMR flow and summer Delta outflow that somehow 

occurred between these alternatives and the empirical data (Figure F.5-3, 4Figure F.5-4). 

F.5.1.1.4 Biological Assessment Takeaways 

The Delta Smelt LCME Analysis, Appendix F, Alternatives Modeling, Attachment X produces 

estimates values for larval recruitment and survival at the subsequent life stages (Smith et al. 

2021). The most statistically supported model used means of December-June OMR values, June-

August outflow aggregated from monthly values or longer timescales, and aggregated food/prey 

metric from January to March. The model is used to calculate expected annual population growth 

rate (λ; the abundance of current year divided by abundance from previous year) as a 

performance measure of Delta seasonal flow operations influence on OMR and outflow over a 

twenty year time period (1995-2015). 

The general statistical prohibition against extrapolation suggests that model predictions are more 

uncertain when explanatory variables are outside the range of observations to which the model 

was fit. Most CalSim-predicted flows and zooplankton predictions were not outside the range of 

observations to which the Delta smelt LCME was fit, but some alternatives did include out-of-

range values. EXP1 included much lower June-August Delta Outflows than observed and higher 

(more positive) OMR values than observed in some years. EXP3 OMR values were similar to 

EXP1, but EXP3 June-August Delta Outflows were within the observed range. The multiple 

components of the PA also contained some April-May OMR values that were more negative than 

the observed range. Overall, CalSim-predicted June-August Outflow values were generally lower 

than the empirical data under Wet or Above Normal years. Predicted prey biomass for all 

alternatives was within the observed range, except for certain years where higher prey biomass 

were predicted than the empirical data for all alternatives. 

The geometric mean of the expected population growth across years (1995-2015), λ, for the PA 

components ranged from 0.95 to 0.98 (Table F.5-6). The means of the expected population 

growth rate varied more widely across water year types and showed positive growth rates under 

wetter meteorology and negative growth rates under drier meteorology. Note that wetter years 

also occurred with greater frequency at the beginning of the time series (1995-1999) compared to 
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the end of the time series (2006-2015). Predicted flow and zooplankton conditions associated 

with EXP3 resulted in the highest geometric mean λ (1.30), whereas NAA and the various 

components of PA produced geometric mean λ similar to the empirical data (0.95-0.98 vs. 0.96). 

While NAA and the various components of the PA resulted in higher λ than the empirical data 

during drier years, they also resulted in lower λ than the empirical data during wetter years 

(Table F.5-6). 

NAA and the various components of the PA may have produced higher λ during drier years due 

to the more positive OMR values for multiple months and higher zooplankton estimates in 

February. Meanwhile, NAA and the PA components may have produced lower λ than the 

empirical data during wetter years because of the lower June-August Delta Outflow values and 

more negative OMR values for some months. NAA and the PA components did not produce 

higher λ despite OMR restrictions that should reduce entrainment of Delta smelt. This may be 

due to the apparent trade-off between OMR flow and summer Delta outflow that somehow 

occurred between PA components and the empirical data (Figures BA2, BA3). 

Table F.5-6. Geometric mean of predicted population growth rate (λ) across all years and 

binned into wetter and drier years for all alternatives.  

Category EXP1 EXP3 NAA 

PAwoTUCP 

woVA 

PAwoTUCP 

wDeltaVA 

PAwoTUCP 

wSystemwideVA Empirical 

1995-2015 1.01 1.41 0.97 0.95 0.98 0.98 0.96 

Below Normal, Dry, or 

Critically Dry years 

0.57 0.90 0.74 0.75 0.77 0.77 0.58 

Wet and Above 

Normal years 

1.91 2.32 1.32 1.24 1.27 1.28 1.68 

Empirical scenario indicates the LCME fit to observed data, while all alternative models represent simulations using 

CalSim output. 

F.5.1.1.5 Environmental Impact Statement Takeaways 

Table F.5-7. Geometric mean of predicted population growth rate (λ) across all years and 

binned into wetter and drier years for all alternatives.  

Category Alt1 

Alt2woTUCP 

woVA 

Alt2wTUCP 

woVA 

Alt2woTUCP 

wDeltaVA 

Alt2woTUCP 

wSystemwideVA Alt3 Alt4 Empirical NAA 

1995-2015 0.72 0.95 0.94 0.98 0.98 1.20 0.94 0.96 0.97 

Below Normal, 

Dry, or Critically 

Dry years 

0.54 0.75 0.74 0.77 0.77 0.95 0.72 0.58 0.74 

Wet and Above 

Normal years 

0.98 1.24 1.24 1.27 1.28 1.55 1.25 1.68 1.32 

Empirical scenario indicates the LCME fit to observed data, while all alternative models represent simulations using 

CalSim output. 
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