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Appendix F, Modeling 

Attachment F Maunder and Deriso in R Model 

Model Overview 

The Delta Smelt life cycle model published by Maunder and Deriso (2011) was updated in 2021 

following the approach of Polansky et al. (2021) as far as practical, by modifying and 

generalizing the originally published model. This update to the publication version (henceforth 

referred to as the Maunder and Deriso model in R, or MDR) models a single cohort life strategy 

species that dies after it reproduces (i.e. the final transition is from adults to recruits and very few 

adults survive to the next time period e.g. an annual species). It is modelled in a Frequentist 

state-space framework allowing for both process variation and observation error. Transition 

between stages (i.e. survival and the stock-recruitment relationship) can be a function of density 

and covariates, in addition to unexplained temporal variation (process error). Covariates can also 

be used to influence the density dependent relationship or the survey catchability (bias). The 

model can be fitted to any number of surveys representing any of the stages. There is also 

flexibility in the timing of density dependence, surveys, process error and covariates. The 

covariates can be can estimated as random variables to represent uncertainty in the measurement 

of the covariates, dealing with missing covariates, or allowing for uncertainty in projections, but 

this is not illustrated here. 

Relative to the 2011 publication, the MDR includes an additional stage (sub-adults), with stages 

adjusted appropriately, fit to two additional indices of abundance for adults (spring midwater 

trawl prior to 2001 and spring Kodiak trawl for 2001 and later). Additionally, catchability 

(survey bias) is now estimated for the spring midwater trawl, and the likelihood function was 

changed to a log normal. The time period was also extended and now includes cohorts between 

1995 and 2015. Potential covariates of survival and recruitment were borrowed from Smith et al., 

(2021). The surveys were fitted at the start of the stage before any other processes occurred. 

Covariates and process variation were added after density dependence when it was included. 

Model Development 

In 2021 and 2022, Mark Maunder developed a generalized life cycle model, extending the model 

described by Deriso and Maunder (2011) [henceforth referred to as the M&D model] and applied 

the resulting model to Delta smelt, with candidate covariates and several of the model extensions 

borrowed from Polansky et al, (2021). Important differences between the original M&D model 

and the application of Polansky et al. nevertheless remain, and include model structure, surveys 

used, inference method, covariates tested and consideration of density dependence; these 

differences are summarized in Table 1. The updated model, hereafter referred to as the MDR, is 

programmed in Template Model Builder (TMB; Kristensen et al., 2016) within R (R Core Team, 
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2017) in a Frequentist, state-space framework allowing for both process variation and 

observation error. Transition between stages (i.e. survival and the stock-recruitment relationship) 

can be a function of density and covariates, in addition to unexplained temporal variation 

(process error). For the purposes of the application described herein – and based on previous 

analysis showing near equal support for density-dependent and -independent model forms – all 

transitions were assumed to be density-independent. 

The MDR was modified from the original M&D model to include an additional stage (sub-

adults; with the other stages adjusted appropriately) and estimate catchability (i.e. survey bias). 

The MDR is also fit to two additional indices of abundance for adults (spring midwater trawl 

prior to 2001 and spring Kodiak trawl for 2001 and later), and the likelihood function was 

changed to a log-normal likelihood (see Appendix A for additional detail). The period (1995-

2015) and the covariates used by Polansky et al. (2021) are different than those used in Maunder 

and Deriso (2011), and so were also updated in the MDR. 

Workflow for application of MDR to Scenario Evaluation 

Building from Mark Maunder’s 2021 work, ICF has extended the MDR for evaluation of 

alternative management scenarios. The underlying population dynamics model, and the statistical 

model fitting procedures, as coded in C++ were not altered, but ICF significantly expanded upon 

the R code used to fit, validate, and project the population dynamics model given alternative sets 

of environmental covariate values and associated model parameter estimates. Primary extensions 

include streamlined processing of covariate data to allow for rapid iteration between model 

formulations, an automated process for generating scenarios with modified covariate values 

based on hypothetical management actions, a series of functions for producing visualizations that 

aid in model interpretation and validation, and a function-based approach to model projection 

under multiple scenarios. The general methods for such scenario evaluation are as follow: 

1. Select candidate covariates of each life-stage transition. 

An initial, extensive set of covariate data taken from the analysis of Smith et al. 

(2021) was provided by USFWS and served as the candidate set for model 

selection. 

2. Select a base model. 

The “best” model was defined as the combination of covariates resulting in the 

lowest Akaike’s Information Criterion and was identified through a hybrid 

approach that used both stochastic and step-wise methods (see below). 

3. Fit the model to historic abundance indices and covariate data. 

The model is fit using maximum likelihood with optimization algorithms provided 

by TMB. 

4. Project the model with baseline and alternative covariate values. 
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a. Although theoretically possible, the state-space nature of the MDR poses 

challenges for backward-looking projection. That is to say, it is difficult to 

“rewind” the model to the beginning of the time-series used in model 

fitting and project forward from the historical abundances. As a result, 

model runs were projected forward from 2015, the last year in the data used 

for fitting. 

b. The predicted effect of various management actions was evaluated by 

modifying the historical covariates (OMR and Delta Outflow) to reflect 

alterations in water operations. Modified timeseries of covariates were then 

used in the model projection phase. A baseline projection was also created 

by recycling all 1995-2015 covariate data. 

5. Calculate annual population growth rates for the projected populations and 

compare them to baseline projections. 

a. Projected populations trajectories for each scenario were compared with 

one another and with the baseline (i.e. projection with unmodified historic 

covariates) to evaluate the relative performance of Delta Smelt under 

varying levels of entrainment loss during December-April. 

b. Note that the projections should be used only for comparative purposes and 

should not be interpreted as accurate predictions of future abundances. In 

developing and evaluating the MDR, Mark Maunder noted that forward 

projection resulted in highly uncertain abundance estimates because even 

after the inclusion of covariates and density dependence, a large amount of 

unexplained temporal variation in survival remains (see the discussion in 

Appendix A). 

Model Selection 

A wide range of environmental and operational covariates have been hypothesized to impact 

recruitment and/or life-stage specific survival in Delta Smelt. As a statistical model, the MDR is 

suitable for identifying and evaluating the strength of correlations between each of the modeled 

vital rates and one or more candidate covariates. In contrast to a mathematical simulation, such 

as the Delta smelt individual based model (IBMR), the form and strength of any covariate 

influence cannot be manually specified, and so hypothetical management scenarios can only be 

compared through projection when a managed covariate is found to significantly influence one 

or more vital rate. A commonly used approach for selection of an optimal model is to begin with 

all candidate covariates included and then sequentially remove variables based on some selection 

criterion. However, this stepwise approach has several important limitations when applied to the 

MDR model: 

1. Inclusion of multiple correlated covariates of a single life-stage transition in the 

model tends to produce poor fits and obscure the influence of such covariates. 

Stepwise selection must therefore be initiated from a set a candidate set where 

covariates of a given transition are not highly correlated (i.e. r> ~0.6-0.7). 
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2. The importance of a covariate may depend on the inclusion of another covariate in 

the same, or a separate life-stage transition, and in such cases a stepwise approach 

to model selection can exclude an important covariate. 

3. Retention of a covariate may depend on whether density dependence is included in 

one or more of the life-stage transitions. 

A global model selection approach where all potential combinations of covariates are evaluated 

would theoretically overcome these limitations, but such an approach is precluded by 

computational time: given a large pool of potential survival and recruitment covariates, and four 

separate transitions to which covariates may be applied, the number of potential model 

parameterizations is extremely large. As an alternative approach, a stochastic model selection 

procedure was therefore developed that attempts to realize the benefits of global model selection 

(i.e. identifying potential synergies or dependencies between covariates) within a reasonable 

amount of computational time. The stochastic approach involved random selection of two 

covariates per transition from the complete set of candidates (Table 1) and random selection of 

which, if any, life stages were subject to density dependence (options for density dependence 

were weighted such that there was equal probability of no density dependence and any density 

dependence). All covariate data sources, and summarization approaches are as reported in Smith 

et. al (2021). 

Table 1. Candidate Covariates included in Model Selection 

Covariate^ Impacted Transition Covariate aggregate months* 

X2 Post-larval survival June-August 

Delta Outflow Post-larval survival June-August 

Delta mean Temperature Post-larval survival June-August 

Delta mean Secchi depth Post-larval survival June-August 

Food (small) Post-larval survival June-August 

Food (small/large) Post-larval survival June-August 

Inland Silverside Index Post-larval survival June-August 

Threadfin Shad Index Post-larval survival June-August 

Tridentiger Goby Index Post-larval survival June-August 

South Delta Secchi Depth Post-larval survival April-June 

OMR Post-larval survival April-June 

X2 Juvenile Survival September-November 

Delta Outflow Juvenile Survival September-November 

Delta mean Temperature Juvenile Survival September-November 

Delta mean Secchi depth Juvenile Survival September-November 

Food (large) Juvenile Survival September-November 

Food (small/large) Juvenile Survival September-November 
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Covariate^ Impacted Transition Covariate aggregate months* 

Age 1+ Striped Bass Index Juvenile Survival September-November 

OMR Sub-adult Survival December-February 

Delta Outflow Sub-adult Survival December-February 

South Delta Secchi Depth Sub-adult Survival December-February 

Delta mean Temperature Sub-adult Survival December-February 

Delta mean Secchi depth Sub-adult Survival December-February 

Proportional Entrainment (Low Bookend) Sub-adult Survival December-February 

Proportional Entrainment (High Bookend) Sub-adult Survival December-February 

Salvage Sub-adult Survival December-February 

Age 1+ Striped Bass Index Sub-adult Survival December 

Food (large) Sub-adult Survival December-February 

Delta Outflow Recuitment March-May 

Delta mean Temperature Recuitment March-May 

Delta mean Secchi depth Recuitment March-May 

Food (small) Recuitment March-May 

Food (large) Recuitment March-May 

Inland Silverside Index Recuitment March-May 

Tridentiger Goby Index Recuitment March-May 

X2 Recuitment Prior September-November 

For each randomly generated model, Akaike’s Information Criterion corrected for small sample 

sizes (AICc) was calculated as an index of overall model performance. Next, 80% confidence 

intervals were calculated for each covariate in the model and were evaluated for significance (i.e. 

overlap of zero). This stochastic model fitting procedure was repeated 400,000 times. After 

completion of stochastic model building, the results were summarized by calculating, for each 

candidate covariate, the proportion of times the covariate was significant in a model, given that it 

was selected (i.e. 80% confidence interval excluding zero), and the average AICc of the models 

in which a covariate was included. In addition, the model with the lowest overall AICc score was 

used as a starting point for a final, stepwise model selection approach to evaluate whether a 

better model could be produced by including more or less than two covairates per transition. 

The overall “best” model identified after application of the hybrid stochastic-stepwise model 

selection process included South Delta Secchi depth and Beverton-Holt density dependence for 

the sub-adult survival transition. The lowest AICc model excluding density dependence also 

included OMR as a significant covariate of sub-adult survival (Table 1). Models where ΔAICc 

<2 are generally considered to be essentially equal in terms of parsimony, and so based on this 

analysis the role of density dependence remains equivocal. 
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Table 2. Summary of “best” models as identified through a hybrid stochastic and 

stepwise model selection procedure. 

 With Density-Dependence No Density-Dependence 

Density Dependent Transition Sub-adult Survival N/A 

Post-Larval Survival Temperature_mean_Jun0Aug0 

NJACM_BPUV_Jun0Aug0* 

Temperature_mean_Jun0Aug0 

NJACM_BPUV_Jun0Aug0* 

Juvenile Survival Secchi_mean_Sep0Nov0 

Temperature_mean_Sep0Nov0 

Secchi_mean_Sep0Nov0 

Temperature_mean_Sep0Nov0 

Sub-Adult Survival SouthSecchi_mean_Dec0Feb1 OMR_Dec0Feb1 

SouthSecchi_mean_Dec0Feb1 

Recruitment Fall_X2_Lag N/A 

Minimum AICc 215 217 

*Summer food density or X2 can be substituted for summer outlfow with negligible impact on AICc 

Model Application 

The approach to evaluating alternative management actions with the MDR was similar to that 

used in support of the Collaborative Science and Adaptive Management Program (CSAMP) 

Delta Smelt Structured Decision Making (SDM) process. After fitting and optimizing the model 

as described above, historic covariate data (1995-2015) were modified following CalSim 3 

scenarios and the geometric mean λ across all years was calculated for each scenario. Other 

model inputs including temperature and turbidity were not adjusted as doing so would 

necessitate substantial additional model development. Monthly flow data were obtained from 

CalSim 3 outputs for each scenario. For Old and Middle River flow the monthly values were 

averaged across the December-February period. For summer outflow, the cumulative daily flow 

from June-August was estimated from monthly CalSim 3 Net Delta Outflow Index values by 

converting cfs to acre-feet (1 cfs = 1.983 acre-feet per day), multiplying each monthly value by 

the number of days in the month, and then summing across months. The approach to covariate 

summarization was intended to match the methods of Smith et al. (2021) as closely as possible, 

though note that because this model does not separate entrainment and natural mortality or 

include sub-cohorts, winter OMR is a single covariate in the MDR while it is separated into 

multiple variables by Smith et al. (2021). Differences in the scenario values from the outflow 

(Figure 1) and OMR (Figure 2) data used for model fitting show that the alternatives generally 

reduced June-August outflow in wet years while EXP1 and EXP3 reduce outflow across most 

years, while OMR was more positive in non-wet years and more negative in wet years with Alt3 

consistently higher and Alt1 consistently lower than the NAA and Alt2 options. 
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Figure 1. Difference in December-February mean OMR relative to observed data used 

for model fitting. 

 

Figure 2. Difference in December-February mean OMR relative to observed data used 

for model fitting. 
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To evaluate alternatives, the adjusted flow covariate values and unadjusted temperature and 

turbidity covariate values described above were used to project Delta Smelt population dynamics 

forward from the last included adult index observation (2015). The state-space implementation 

of the model makes it impractical to project forward from the 1995 adult abundance, and so the 

projected abundances are not expected to match the historic index values. However, in the 

density-independent implementation used for this application, the proportional change in 

abundance (i.e. the key performance metric, λ) is insensitive to the starting abundance. For the 

sake of simplicity, results are therefore discussed in terms of the observed time-period (1995-

2015). In general, the absolute values of projected abundances and population growth should be 

interpreted cautiously because a high level of residual variability is not explained by the model 

covariates. Results should therefore be used primarily to compare alternatives. 

Assumptions/Uncertainty 

1. Abundance indices are assumed to be normally distributed. 

2. Stock-recruitment and survival process error are assumed to be lognormally 

distributed and density-independent. 

3. Delta Smelt are treated as annual species. 

4. Covariates are assumed to be independent: the approach to scenario evaluation 

modifies values of prescribed covariates and assumes that it would be possible to 

achieve such values without influencing other covariates (e.g. outflow could be 

increased without impacting Delta water temperature or turbidity). 

5. Projections do not incorporate any uncertainty in covariate estimates and cannot be 

interpreted as actual predictions of future annual abundance. The utility of 

projections is the ability to compare the relative performance of multiple 

alternatives; absolute abundances and population growth rates should therefore be 

discussed with great caution and with proper caveats. 

Code and Data Repository 

Covariate used data for model fitting were obtained from Smith et al. (2021). All CalSim3 data 

and code for fitting models, projecting alternatives and summarizing/visualizing results are 

located in: 

USBR_2021LTO/Public Draft Alternatives/Appendix K. Summer and Fall X2/K. Summer and 

Fall X2_Maunder and Deriso/Data and Code 
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Results 

Across the complete projection period (1995-2015 covariate values, projected forward from the 

observed 2015 adult abundance index) the geometric mean of the expected population growth, λ, 

did not exceed 1 (i.e. positive population growth) for any alternative, but did for both EXP 

scenarios (Table 3). Projection with unmodified historical covariate values (i.e. the Base 

scenario) resulted in a geometric mean λ of 0.817 across the 20 modeled years and each of 

alternatives except for Alt3 (λ = 0.966) resulted in lower geometric mean values ranging from 

0.578 for Alt 1 to 0.75 for the Alt2 phases and NAA. In contrast, EXP1 and EXP3 projections 

resulted in, on average, positive population growth with geometric mean λ values of 1.380 and 

1.524, respectively. Predictably, delta smelt population performance was impacted by annual 

hydrologic conditions, with the geometric mean of λ higher during wet and above normal water 

years and lower during below normal and drier water years (λ =0.633 vs. λ=0.905 under the 

baseline projection). Projection under each of the alternatives, except for Alt1, produced 

increases in population growth rate relative to the baseline in below normal and drier water 

years. In contrast, for all alternatives during above normal and wet water years (and Alt1 during 

all water year types), projections resulted in decreased population growth relative to the baseline. 

The combined effect of these changes was reduced variability in population growth between 

hydrological groupings, but no overall improvement in delta smelt population growth. Projection 

of both EXP scenarios resulted in increased population growth relative to the baseline, with 

larger increases in above normal and wet water years. Because wet and above normal water years 

were more common in the first half of the time-series (1995-2004), average population growth 

was projected to be higher during this period for all scenarios, with Alt3 producing a geometric 

mean λ>1 during this period. 
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Figure 3. Plot of projected annual population growth rates in EXP1, EXP3, NAA, and Alt2 

Phases. 

 

Figure 4. Difference from baseline in projected population growth rates in EXP1, EXP3, 

NAA, and Alt2 Phases. 
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Figure 5. Plot of difference in projected annual population growth rate from NAA. 

 

Figure 6. Boxplots showing the complete distributions of population growth rate for all 

scenarios.
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Table 3. Estimates by annual growth rates. Parenthetical values show percent change from the baseline projection. 

Year EXP1 EXP3 NAA Alt2woTUCPwoVA Alt2wTUCPwoVA Alt2woTUCPDeltaVA Alt2woTUCPAllVA 

1995 3.27 (117) 3.09 (105) 0.9 (-41) 0.88 (-42) 0.88 (-42) 0.87 (-42) 0.87 (-42) 

1996 2.89 (53) 3.04 (61) 0.89 (-53) 0.84 (-56) 0.84 (-56) 0.83 (-56) 0.83 (-56) 

1997 1.49 (51) 1.67 (69) 0.68 (-31) 0.68 (-31) 0.68 (-31) 0.68 (-31) 0.68 (-31) 

1998 4.15 (38) 3.74 (24) 1.22 (-59) 1.2 (-60) 1.2 (-60) 1.19 (-60) 1.19 (-60) 

1999 4.46 (155) 4.92 (182) 2.35 (34) 2.25 (29) 2.25 (29) 2.26 (29) 2.26 (29) 

2000 0.62 (59) 0.72 (86) 0.45 (17) 0.46 (19) 0.46 (19) 0.47 (21) 0.47 (21) 

2001 0.71 (105) 0.81 (132) 0.49 (40) 0.49 (41) 0.49 (41) 0.49 (41) 0.49 (41) 

2002 1.5 (113) 1.75 (149) 1.02 (44) 1.05 (48) 1.05 (48) 1.05 (48) 1.04 (47) 

2003 1.05 (113) 1.27 (157) 0.7 (41) 0.69 (40) 0.69 (40) 0.69 (40) 0.69 (39) 

2004 0.66 (112) 0.79 (152) 0.44 (40) 0.43 (39) 0.43 (39) 0.43 (38) 0.43 (38) 

2005 1.74 (113) 1.9 (132) 0.6 (-27) 0.59 (-28) 0.59 (-28) 0.59 (-28) 0.59 (-28) 

2006 0.75 (21) 0.8 (29) 0.38 (-38) 0.38 (-38) 0.38 (-38) 0.38 (-38) 0.38 (-38) 

2007 0.65 (37) 0.76 (61) 0.52 (10) 0.52 (10) 0.52 (10) 0.51 (8) 0.51 (8) 

2008 1.1 (43) 1.26 (64) 0.87 (13) 0.89 (16) 0.89 (16) 0.89 (15) 0.89 (16) 

2009 1.55 (56) 1.88 (89) 1.16 (17) 1.19 (20) 1.19 (20) 1.18 (19) 1.17 (18) 

2010 4.3 (211) 4.44 (221) 1.34 (-3) 1.28 (-8) 1.28 (-8) 1.26 (-9) 1.24 (-10) 

2011 4.14 (51) 4.12 (51) 1.69 (-38) 1.81 (-34) 1.81 (-34) 1.75 (-36) 1.76 (-36) 

2012 0.5 (27) 0.57 (43) 0.34 (-14) 0.35 (-13) 0.35 (-13) 0.35 (-13) 0.35 (-13) 

2013 1.2 (-2) 1.42 (15) 1.16 (-6) 1.14 (-7) 1.13 (-8) 1.16 (-5) 1.15 (-7) 

2014 0.74 (57) 0.84 (78) 0.48 (1) 0.5 (6) 0.49 (3) 0.5 (6) 0.5 (5) 

2015 0.62 (50) 0.7 (68) 0.46 (11) 0.46 (10) 0.47 (14) 0.45 (7) 0.53 (27) 
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Table 4. Estimates by annual growth rates. Parenthetical values show percent change from the NAA projection. 

Year Alt1 Alt2woTUCPwoVA Alt2wTUCPwoVA Alt2woTUCPDeltaVA Alt2woTUCPAllVA Alt3 Alt4 NAA 

1995 0.76 (-15) 0.88 (-2) 0.88 (-2) 0.87 (-3) 0.87 (-3) 1.22 (36) 0.92 (2) 0.9 (0) 

1996 0.84 (-6) 0.84 (-7) 0.84 (-7) 0.83 (-7) 0.83 (-7) 1.12 (25) 0.84 (-6) 0.89 (0) 

1997 0.6 (-11) 0.68 (1) 0.68 (1) 0.68 (1) 0.68 (1) 0.76 (13) 0.71 (5) 0.68 (0) 

1998 0.97 (-20) 1.2 (-2) 1.2 (-2) 1.19 (-2) 1.19 (-2) 2.1 (73) 1.25 (3) 1.22 (0) 

1999 1.56 (-34) 2.25 (-4) 2.25 (-4) 2.26 (-4) 2.26 (-4) 2.75 (17) 2.24 (-5) 2.35 (0) 

2000 0.3 (-34) 0.46 (2) 0.46 (2) 0.47 (4) 0.47 (3) 0.46 (1) 0.44 (-4) 0.45 (0) 

2001 0.33 (-32) 0.49 (1) 0.49 (1) 0.49 (1) 0.49 (1) 0.69 (42) 0.49 (1) 0.49 (0) 

2002 0.67 (-34) 1.05 (3) 1.05 (3) 1.05 (3) 1.04 (2) 1.35 (33) 1.05 (3) 1.02 (0) 

2003 0.41 (-41) 0.69 (-1) 0.69 (-1) 0.69 (-1) 0.69 (-1) 0.72 (3) 0.7 (1) 0.7 (0) 

2004 0.28 (-36) 0.43 (-1) 0.43 (-1) 0.43 (-1) 0.43 (-1) 0.57 (31) 0.44 (1) 0.44 (0) 

2005 0.5 (-17) 0.59 (-2) 0.59 (-2) 0.59 (-2) 0.59 (-1) 0.98 (63) 0.61 (2) 0.6 (0) 

2006 0.26 (-32) 0.38 (0) 0.38 (0) 0.38 (0) 0.38 (0) 0.52 (36) 0.38 (0) 0.38 (0) 

2007 0.38 (-28) 0.52 (-1) 0.52 (-1) 0.51 (-2) 0.51 (-2) 0.68 (31) 0.51 (-3) 0.52 (0) 

2008 0.78 (-10) 0.89 (2) 0.89 (2) 0.89 (2) 0.89 (2) 1.05 (21) 0.86 (-1) 0.87 (0) 

2009 0.79 (-32) 1.19 (3) 1.19 (3) 1.18 (2) 1.17 (1) 1.32 (14) 1.16 (0) 1.16 (0) 

2010 1.06 (-21) 1.28 (-5) 1.28 (-5) 1.26 (-6) 1.24 (-7) 2.11 (57) 1.27 (-6) 1.34 (0) 

2011 1.63 (-4) 1.81 (7) 1.81 (7) 1.75 (4) 1.76 (4) 2.06 (22) 1.82 (8) 1.69 (0) 

2012 0.24 (-29) 0.35 (1) 0.35 (1) 0.35 (2) 0.35 (1) 0.41 (21) 0.35 (4) 0.34 (0) 

2013 1.03 (-11) 1.14 (-1) 1.13 (-2) 1.16 (1) 1.15 (-1) 1.26 (9) 1.09 (-5) 1.16 (0) 

2014 0.4 (-17) 0.5 (4) 0.49 (2) 0.5 (4) 0.5 (4) 0.71 (47) 0.48 (1) 0.48 (0) 

2015 0.44 (-5) 0.46 (-1) 0.47 (2) 0.45 (-3) 0.53 (14) 0.59 (27) 0.49 (6) 0.46 (0) 
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Table 5. Maunder and Deriso in R estimated population growth rates by water year type. Parenthetical values show 

percent change from the baseline projection. 

Grouping EXP1 EXP3 NAA Alt2wTUCPwoVA Alt2woTUCPwoVA Alt2woTUCPDeltaVA Alt2woTUCPAllVA Baseline 

All 1.38 (69) 1.52 (86) 0.75 (-8) 0.75 (-8) 0.75 (-8) 0.75 (-8) 0.75 (-8) 0.82 (0) 

1995-2004 1.62 (88) 1.77 (106) 0.8 (-7) 0.79 (-8) 0.79 (-8) 0.79 (-8) 0.79 (-8) 0.86 (0) 

2005-2015 1.2 (53) 1.33 (71) 0.71 (-9) 0.72 (-8) 0.72 (-8) 0.71 (-9) 0.72 (-8) 0.78 (0) 

BN/Dry/Critical 0.94 (48) 1.08 (71) 0.71 (12) 0.72 (13) 0.72 (13) 0.71 (13) 0.73 (16) 0.63 (0) 

Above Normal/Wet 1.61 (78) 1.75 (93) 0.77 (-15) 0.77 (-15) 0.77 (-15) 0.76 (-16) 0.76 (-16) 0.91 (0) 

Critical 0.68 (53) 0.77 (73) 0.47 (6) 0.48 (8) 0.48 (8) 0.47 (6) 0.51 (15) 0.44 (0) 

Dry 1.1 (45) 1.28 (70) 0.87 (15) 0.87 (16) 0.88 (16) 0.88 (16) 0.87 (16) 0.76 (0) 

Below Normal 1.3 (90) 1.45 (112) 0.68 (-1) 0.68 (-1) 0.68 (-1) 0.67 (-2) 0.67 (-2) 0.68 (0) 

Above Normal 0.76 (93) 0.9 (129) 0.52 (32) 0.52 (32) 0.52 (32) 0.52 (33) 0.52 (32) 0.39 (0) 

Wet 2.6 (64) 2.66 (68) 1 (-37) 0.99 (-38) 0.99 (-38) 0.98 (-38) 0.98 (-38) 1.58 (0) 

Table 6. Maunder and Deriso in R estimated population growth rates by water year type. Parenthetical values show 

percent change from the NAA projection. 

Grouping NAA Alt1 Alt2wTUCPwoVA Alt2woTUCPwoVA Alt2woTUCPDeltaVA Alt2woTUCPAllVA Alt3 Alt4 

All 0.75 (0) 0.58 (-23) 0.75 (0) 0.75 (0) 0.75 (0) 0.75 (0) 0.97 (28) 0.75 (0) 

1995-2004 0.8 (0) 0.58 (-27) 0.79 (-1) 0.79 (-1) 0.79 (-1) 0.79 (-1) 1.01 (26) 0.8 (0) 

2005-2015 0.71 (0) 0.58 (-19) 0.72 (1) 0.72 (1) 0.71 (0) 0.72 (1) 0.93 (31) 0.72 (0) 

BN/Dry/Critical 0.71 (0) 0.58 (-18) 0.72 (1) 0.72 (1) 0.71 (1) 0.73 (3) 0.89 (26) 0.71 (0) 

Above Normal/Wet 0.77 (0) 0.58 (-25) 0.77 (-1) 0.77 (-1) 0.76 (-1) 0.76 (-1) 1 (29) 0.77 (0) 

Critical 0.47 (0) 0.42 (-11) 0.48 (2) 0.48 (2) 0.47 (0) 0.51 (9) 0.65 (37) 0.49 (3) 

Dry 0.87 (0) 0.68 (-22) 0.87 (1) 0.88 (1) 0.88 (1) 0.87 (1) 1.05 (21) 0.86 (-1) 

Below Normal 0.68 (0) 0.5 (-26) 0.68 (-1) 0.68 (-1) 0.67 (-1) 0.67 (-2) 0.95 (40) 0.68 (0) 

Above Normal 0.52 (0) 0.32 (-37) 0.52 (0) 0.52 (0) 0.52 (1) 0.52 (0) 0.57 (11) 0.51 (-1) 

Wet 1 (0) 0.82 (-18) 0.99 (-1) 0.99 (-1) 0.98 (-2) 0.98 (-2) 1.31 (31) 1.01 (1) 
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Results 

• Geometric mean of population growth rate from 1995 to 2015 was lower than historic 

baseline projections for all scenarios except EXP1, EXP3, and Alt3 scenarios. EXP1, 

EXP3 and Alt3 performed better than most scenarios/alternatives (i.e., higher λ) and Alt1 

performed worse than most alternatives (i.e., lower λ). All Alt2 options, and the NAA 

performed similarly. 

• EXP1, EXP3 and Alt3 scenarios likely produced in higher λ due to more positive OMR 

flows and the relatively high June-August Delta Outflow during dry years (Figures 1-2). 

Alt1 scenario likely produced lower λ relative to most scenarios due to the more negative 

OMR flows during most months. 
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