Cyanobacteria Harmful Algal Bloom Monitoring Strategy for the Sacramento-San Joaquin Delta

¹ California Department of Water Resources

² Environmental Science Associates

³ Delta Stewardship Council – Delta Science Program

⁴ California Department of Fish and Wildlife

Table of Contents

Cyanobacteria Harmful Algal Bloom M Joaquin Delta	onitoring Strategy for the Sacramento-San
Figures	iv
Acknowledgements	i
Glossary	iii
Executive Summary	iv
1 Introduction	1
1.1 Purpose	1
1.2 Background on the Delta	1
1.3 November 2022 HABs Work	shop2
1.4 Multi-Organization Coordin	ated Monitoring3
1.5 Strategy Scope	5
1.5.1 Items Covered	5
1.5.2 Items Not Covered	5
2 Existing Knowledge of Delta CHA	AB Dynamics6
2.1 Phytoplankton	7
2.2 Cyanotoxins	
2.3 Drivers of Delta CHABs	17
3 Overview of Current CHAB Mon	toring Efforts
3.1 Long-term Continuous and	Discrete Monitoring32
3.2 On-going Parallel Efforts	
4 Knowledge Gaps and Collaborat	ion Opportunities43
4.1 Data Gaps	
4.2 Collaboration Gaps and Opportu	nities44
5 Goals and Objectives and Recon	nmendations44
5.1 Goal 1: Enhance Delta CHAE	Collaboration47

5.2	Goal 2: Identify management questions, monitoring goals, and objective 52	es
5.3	Goal 3: Develop a Delta CHAB Monitoring Program	51
5.4	Goal 4: Define Collaborative Reporting Protocols	74
5.5	Goal 5: Utilize a Data Sharing Platform	77
6 Ad	aptive Management	32
7 Im	plementation	33
7.1	Near-Term Implementation	34
7.2	Long-Term Implementation	34
Append	3	35
Referer	nces	38
Bricker, S assessme	5.B., Ferreira, J.G., Simas, T. 2003. An integrated methodology for ent of estuarine trophic status. Ecological Modelling, 169, 39e60	89
Bui T, Da microcys 2018(10)	o TS, Vo TG, Lurling M (2018) Warming affects growth rates and tin production in tropical bloom-forming Microcystis strains. Toxins 123. doi:10.3390/toxins100301238	89
Cai, P., Ca Microcyst Microorg	ai, Q., He, F., Huang, Y., Tian, C., Wu, X., & Xiao, B. (2021). Flexibility of tis overwintering strategy in response to winter temperatures. anisms, 9(11), 2278	89
Carey CC physiolog climate. V	, Ibelings BW, Hoffman EP, Hamilton DP, Brookes JD (2012) Eco- gical adaptations that favour freshwater cyanobacteria in a changing Water Research 46:1394-1407	89
С		39

Figures

Figure 1. Description of the phased approach to monitoring for HABs	vi
Figure 2. Map of the San Francisco Estuary	2
Figure 3. Chl-a concentrations averaged across the summer season	8
Figure 4. Abundance of <i>Microcystis</i> averaged across the summer season	.11
Figure 5. Microcystis visual index (MVI)	13
Figure 6. Map of Frequency of occurrence of (A) MVI levels 4+5 and (B) 3+4+5	14
Figure 7. Conceptual model for CHAB drivers in the Delta	20
Figure 8. Boxplots of salinity by month and by region	23
Figure 9. Monthly surface water temperatures averaged	25
Figure 10. Boxplots of A) DIN and B) ortho-Phosphate, by month and region	28
Figure 11. Potential chl-a averaged by month and by region	31
Figure 12. Map of Harmful Algae Satellite Analysis Tool	37
Figure 13. Map of continuous water quality stations	.38
Figure 14. Map of nitrogen stations	39
Figure 15. Map of Microcystis Visual Index Scale measurement locations	.40
Figure 16. Map of phytoplankton locations	41
Figure 17. Adaptive Management Cycle	82
Figure 18. Map of continuous water flow stations	85
Figure 19. Map of total phosphorus stations	86
Figure 20. Map of Secchi depth stations	87

1 Tables

2	Table 1. Regressions of mean June surface water temperatures
3	Table 2. Temporal and spatial information about the monitoring programs included
4	in Figures 6-10
5	Table 3. Goals and Objectives. 46
6	Table 4. Example management questions and linkages to decision making54
7	Table 5. Example of management questions and associated design considerations
8	and plan for use of monitoring data66
9	Table 6. Recommendations and Objectives that they address
10	

1 Acknowledgements

- 2 This work was supported by the contributions of many dedicated and passionate
- 3 protectors of water quality in the Delta. We owe a great deal of thanks to the
- 4 following individuals for their feedback and guidance on the development of this
- 5 document.

Ivan Senock lenna Rinde Kristal Davis-Fadtke Amanda Maguire Brianne Sakata Dave Bosworth Rosie Hartman Shaun Philippart Silvia Angles Ted Flynn **Tiffany Brown** Zhenlin Zhang Sherri Norris **Dierdre Des Jardins** Dana Shultz **Janis** Cooke Meredith Howard Veronica Burell Lisamarie Windham-Myers Laurel Larsen Eva Bush Henry DeBey Martina Koller Rachael Klopfenstein Scott Navarro Tabitha Birdwell Jay Ziegler Hal MacLean Christine loab Steve Culberson

Buena Vista Rancheria California Department of Fish and Wildlife California Department of Fish and Wildlife California Department of Water Resources California Indian Environmental Alliance California Water Research **Central Valley Regional Water Board Central Valley Regional Water Board Central Valley Regional Water Board** Contra Costa Environmental Health Delta Lead Scientist Delta Lead Scientist (former) Delta Stewardship Council Delta Watermaster East Bay Regional Parks Interagency Ecological Program Interagency Ecological Program

Gloria Alonso Little Manila Rising Shawn Acuña Metropolitan Water District **Beckye Stanton** Office of Environmental Health Hazard Assessment Peggy Lehman Peggy Lehman Consulting (formerly DWR) Restore the Delta Barbara Barrigan-Parilla Spencer Fern Restore the Delta Tim Mussen Sac Sewer Bob Erlenbusch Sacramento Regional Coalition to End Homelessness David Senn San Francisco Estuary Institute Jayme Smith Southern California Coastal Watershed Project **Krystal Moreno** Shingle Springs Band of Miwok Indians Zach Gigone Shingle Springs Band of Miwok Indians Carly Nilson State Water Resources Control Board State Water Resources Control Board **Diane Riddle** Greg Gearheart State Water Resources Control Board Laura Twardochleb State Water Resources Control Board Marisa VanDyke State Water Resources Control Board Sam Bashevkin State Water Resources Control Board Shaela Noble State Water Resources Control Board State Water Resources Control Board Zane Poulson Kristi Arend United States Bureau of Reclamation Isabel Jones United States Environmental Protection Agency Yeana Kwagh United States Environmental Protection Agency United States Geological Survey Andrea Jaegge Keith Bouma-Gregson United States Geological Survey Tamara Kraus United States Geological Survey Meghan Klasic University of Minnesota Haley Plaas University of North Carolina – Chapel Hill Hans Paerl University of North Carolina – Institute of Marine Sciences Leslie Palencia Valley Water

1 2

3

1 Glossary

- 2 Having standardized terminology for HABs monitoring will improve consistency,
- 3 collaboration, and ease of data sharing amongst the Delta science community. The
- 4 following terms and their definitions are what we are using in this document, and
- 5 we hope that these definitions can be standardized across monitoring efforts.
- 6

CCHAB Network	California Cyanobacteria and Harmful Algal Bloom Network
CDEC	California Data Exchange Center
CDFW	California Department of Fish and Wildlife
CHAB ¹	Cyanobacteria harmful algal bloom
DWR	Department of Water Resources
FAIR	Findability, Accessibility, Interoperability, Reuse
FHAB	Freshwater and estuarine harmful algal bloom
HAB ¹	Harmful algal bloom
IEP	Interagency Ecology Program
Delta ISB	Delta Independent Science Board
MERHAB	Monitoring and Event Response for Harmful Algal Blooms
NOAA	National Oceanic and Atmospheric Agency
NPDES	National Pollutant Discharge Elimination System
QAPrP	Quality assurance program plan
SFEI	San Francisco Estuary Institute
SOP	Standard operating procedure
SPATT	Solid phase adsorption toxin tracking
SWAMP	Surface Water Ambient Monitoring Program
USBR	U.S. Bureau of Reclamation
USGS	U.S. Geological Survey

7

8

¹ Throughout this document, "HAB" will be used as an umbrella term for all HABs when speaking in general, and "CHAB" will be used when we are specifically describing a cyanobacterial HAB.

1 Executive Summary

- 2 In winter 2021, the Central Valley Regional Water Quality Control Board and
- 3 California Department of Fish and Wildlife approached the Delta Science Program
- 4 (DSP) to discuss the development of a strategy to address harmful algal blooms
- 5 (HABs) in the Sacramento-San Joaquin Delta (Delta). Although HABs have been a
- 6 major nuisance in the Delta for decades, and many special studies have been
- 7 conducted to demonstrate their noxiousness to the ecosystem and for public
- 8 health, no formal monitoring program specifically for HABs exists in the Delta.
- 9 The DSP hosted a public workshop on HABs in November 2022 that brought
- 10 together interested parties from federal, state, and local governments, Tribal
- 11 governments, community-based organizations, academia, nonprofits,
- 12 nongovernmental organizations, and general members of the public. This
- 13 workshop was developed to facilitate discussions for developing a HAB monitoring
- 14 strategy to fit the needs of the many varied interests on HABs in the Delta. The
- 15 workshop included presentations and panels by experts working in HABs as well as
- 16 breakout sessions and surveys to hear from all attendees. This was all captured in
- 17 the <u>HABs Workshop Summary</u>¹.
- 18 After the workshop, the authors of this document worked to create a strategy that
- 19 would address the expressed needs of workshop attendees to establish a pathway
- 20 for developing a monitoring program to address HABs in the Delta. This included
- 21 refining the scope of such a program to focus on cyanobacterial HABs (CHABs), the
- 22 species that are most problematic in Delta waterways. Throughout the
- 23 development of this document the authors worked with various technical experts,
- 24 Tribes, environmental justice experts, and policymakers to establish a strategy that
- 25 is detailed enough to kickstart specific actions but lenient enough for individual
- 26 parties to continue to share their needs throughout the implementation of the
- 27 document. This strategy recognizes that there is no dedicated funding to specifically
- 28 monitor for CHABs in the Delta, however there are many established monitoring
- 29 programs that collect water quality data that might support data collection for
- 30 CHABs. This provides monitoring practitioners and policymakers with an
- 31 opportunity to capitalize on this nexus to collect data work on collaborative
- 32 approaches to sharing data and to mitigate CHABs in the Delta.

¹https://www.researchgate.net/publication/368841409_Delta_Harmful_Algal_Blooms_Monitoring_Workshop_Summary_-_November_2022

- 1 The goals and objectives and recommendations from this document can be
- 2 implemented through a "phased" or adaptive approach (Figure 1). Because of the
- 3 nature of CHABs as an issue with multiple vested interests, this phased approach
- 4 should be conducted with the community to prioritize investment and
- 5 management questions throughout the implementation of this document. As
- 6 recommended by the Delta ISB (2022), this adaptive approach to monitoring allows
- 7 "a more rigorous system for establishing purpose, setting expectations, and
- 8 conducting review of monitoring programs, as well as fostering communication at
- 9 all levels".
- 10 This document seeks to bring together community desires, synergistic efforts, and
- 11 to build from the work conducted by many dedicated individuals throughout the
- 12 system that led to this strategy being possible. This work specifically builds from
- 13 material published by Dr. Peggy Lehman, Department of Water Resources, the
- 14 California Water Boards' Framework and Strategy for Freshwater Harmful Algal
- 15 Bloom Monitoring (Southern California Coastal Water Research Project and State
- 16 Water Resources Control Board 2021), the Delta Regional Monitoring Program's
- 17 long-term planning for nutrients, Central Valley Regional Water Quality Board's
- 18 Delta Nutrient Research Plan, and the Delta Independent Science Board's Water
- 19 Quality Science in the Sacramento-San Joaquin Delta (2018) and Review of the
- 20 Monitoring Enterprise in the Sacramento-San Joaquin Delta (2022).
- 21

Figure 1. Description of the phased, or adaptive, approach to monitoring for HABs described through the goals,

3 objectives, and recommendations of this strategy. Map is from the San Francisco Estuary Institute.

1 1 Introduction

2 1.1 Purpose

3 Following years of drought and decreased freshwater flows, an increase in the 4 frequency and intensity of cyanobacterial harmful algal blooms (CHABs) is one of 5 many threats to habitat guality in the Sacramento-San Joaguin Delta (Delta). The 6 purpose of this document is to provide a forum for agencies, non-governmental 7 groups, Tribes, and other parties that have a vested interest in mitigating adverse 8 impacts from CHABs to work together toward the common goal of creating a 9 collaborative and cohesive CHAB monitoring strategy for the Delta. While a number 10 of state and federal agencies have legal responsibilities for water management and 11 water quality in the Delta, there exists a "collaboration gap" among agencies for 12 CHAB monitoring and inclusion of Delta communities and interested parties. This 13 document seeks to provide a framework for 1) agreeing on management questions 14 and monitoring goals and objectives that would help shape a common CHAB 15 monitoring strategy, and 2) actionable steps with respect to developing a 16 comprehensive CHAB monitoring program specific to the Delta, interested parties, 17 and the agencies charged with protecting ecosystems and species, and 3) 18 developing a strategy for using monitoring information to inform collaborative 19 management and mitigation decisions. The overall goal of the framework described 20 in this document is to promote shared responsibilities and standardized data 21 collection and reporting protocols in a manner that will benefit CHAB monitoring to 22 inform and improve water quality management decisions. This document provides 23 an overview of current CHAB dynamics, a summary of current CHAB monitoring 24 efforts, identifies potential collaboration and knowledge gaps, and provides goals 25 and recommendations/action steps. This information can be used for organizing 26 discussions around a common CHAB monitoring strategy, for improving our 27 understanding of CHABs and their mitigation in the Delta.

28 1.2 Background on the Delta

- 29 The Delta is a 900 square mile region that is formed by the confluence of the
- 30 Sacramento and San Joaquin rivers in northern California. This region is intersected
- by a large network of sloughs and channels that is connected to the northern part
- 32 of San Francisco Bay via the confluence of the two rivers. The entire system is
- referred to as the San Francisco Estuary. (Nichols et al. 1986, Jassby and Cloern
- 2000, Whipple et al. 2012) (Figure 2). Freshwater from the Delta watershed provides
- 35 drinking water to an estimated 23 million people and water resources for

- 1 agricultural commodities. The Delta also serves as a critical habitat for fish, birds,
- 2 other and wildlife. Because of the competing demands for the Delta's resources,
- 3 the California legislature passed the Delta Protection Act (Section 12220 of the
- 4 Water Code) in 1959 and established a legal boundary of the Delta (). Because this
- 5 legal boundary is used by many of the agencies charged with protecting Delta
- 6 resources it will also be used for the purposes of this framework.
- 7 Estuaries can be challenging to monitor for HABs due to the complexities of
- 8 physical, chemical, and biological interactions along the continuum of freshwater to
- 9 saltwater habitats. In addition to natural complexity, numerous jurisdictional
- 10 boundaries and varying opinions on the goals and priorities for monitoring confers
- 11 further challenges to monitoring in estuaries (Kudela et al. 2023). This framework
- 12 will focus on freshwater cyanobacterial HABs, or CHABs, which are dominant in the
- 13 Delta. To date, monitoring and assessments of CHABs in the Delta have relied on
- 14 special studies, intermittent monitoring, and leveraging parts of established water
- 15 quality programs (Lehman et al. 2005, 2013, 2020). Due to the short-lived nature of
- 16 these studies, it has been challenging to uncover trends of CHABs over time in the
- 17 Delta.

Figure 2. Map of the San Francisco Estuary. The brown line shows the area of the San Francisco Estuary that has been designated as the legal Sacramento-San Joaquin Delta (Delta).

1.3 November 2022 HABs Workshop

In November 2022, the Delta Stewardship Council – Delta Science Program hosted a 2day public, hybrid workshop on HABs monitoring. This workshop supports the Delta Science Program's Science Action Agenda Action 2B: "Develop a framework for monitoring, modeling, and information dissemination in support of operational forecasting and near real-time. visualization of the extent, toxicity, and health impacts of HABs", and Action 5C:

ЪЭ

- 1 "Determine how environmental drivers (e.g., nutrients, temperatures, water
- 2 residence time) interact to cause HABs in the Delta, identify impacts on human and
- 3 ecosystem health and well-being, and test possible mitigation strategies".
- 4 Day 1 of the workshop focused on "Creating a Coordinated Partner Monitoring
- 5 Strategy" and Day 2 on "Data Sharing and Integration" topics spanning from
- 6 strategic methods to approach partner monitoring to communication and data
- 7 sharing methods. This workshop was an opportunity to hear from the Delta science
- 8 community on preferred approaches to a HABs monitoring program in the Delta.
- 9 Major themes included information sharing, equitable and timely access to data,
- 10 and building community partnerships. The authors of this document have tried to
- 11 incorporate those values here to the best of their ability. More information on the
- 12 HABs Monitoring Workshop is available in the <u>Workshop Summary²</u> (Delta Science
- 13 Program 2023).
- 14 1.4 Multi-Organization Coordinated Monitoring
- 15 As described above, the Delta is a complex system both environmentally as well as
- 16 jurisdictionally due to the many organizations charged with protecting the Delta's
- 17 resources. These organizations have different missions, legal authorities,
- 18 responsibilities, and interests. To capture the different needs of the various
- 19 agencies, dischargers, Tribes, and partner organizations, the Delta CHAB
- 20 Monitoring Strategy will need to be developed and implemented in a collaborative
- 21 and coordinated manner. To this end, the CHAB Strategy has leaned on several
- 22 publications that provide recommendations for a holistic integrative HAB
- 23 monitoring approach (Paerl et al., 2018, Smith et al., 2021, Howard et al., 2022),
- 24 though some of these recommendations are outside the scope of the development
- 25 of this CHAB Strategy (see section 1.5 Strategy Scope).
- 26 Given the large number of partner organizations, one factor that is particularly
- 27 relevant for the Delta is that CHAB monitoring needs to be coordinated across
- organizational boundaries and jurisdictions (Howard et al., 2022). An initial list of
- 29 potential partner organizations with vested interests in Delta resources are as
- 30 follows:
- 31 Government Agencies:

⁷https://www.researchgate.net/publication/368841409_Delta_Harmful_Algal_Blooms_Monitoring_Workshop_Summary_-_November_2022

- 1 <u>Delta Plan Interagency Implementation Committee Member Agencies⁸ are core to</u>
- 2 the intended implementation of this document. Agencies that might be most
- 3 relevant to this work are:

5

- California Department of Fish and Wildlife
 - California Department of Public Health
- 6 California Department of Water Resources
- 7 California State Water Resources Control Board
- 8 Central Valley Regional Water Quality Control Board
- 9 San Francisco Regional Water Quality Control Board
- 10 Delta Stewardship Council
- 11 United States Bureau of Reclamation
- 12 United States Army Corps of Engineers
- 13 United States Geological Survey
- United States Environmental Protection Agency
- 15 Local environmental health and park departments
- 16 Drinking water agencies
- 17 Municipalities

18 Non-governmental Organizations:

- 19 Some organizations have been involved throughout this project and are listed here
- 20 as examples and recommendations, but this is not intended to be an exclusive list.
- 21 Restore the Delta
- San Francisco Baykeeper
- San Francisco Estuary Institute
- 24 Little Manila Rising

25 Tribes:

- 26 Some tribes have been involved throughout this project and are listed here as
- 27 examples and recommendations, but this is not intended to be an exclusive list
- Shingle Springs Band of Miwok Indians
- Buena Vista Rancheria
- 30 California Indian Environmental Alliance
- 31 Universities:

⁸ https://deltacouncil.ca.gov/dpiic/members

- 1 Many academic groups have studied the role and impact of CHABs in the Delta and
- 2 may have an interest in continued engagement for special studies and sharing
- 3 information.
- 4 1.5 Strategy Scope
- 5 1.5.1 Items Covered
- 6 This framework is focused on developing a strategy to achieve consistent data
- 7 collection and collaboration to monitor Delta CHABs and inform water quality
- 8 management decisions in a 3–5-year horizon. This Delta CHABs Monitoring Strategy
- 9 builds off the recommendations and framework provided by the California Water
- 10 Board's Framework and Strategy for Freshwater Harmful Algal Bloom Monitoring
- 11 which states that "*monitoring data can be broadly grouped into two categories that*
- 12 *have similar decision support needs: 1) public health protection and response and*
- 13 *2) FHAB water quality management decision support*" (Smith et al. 2021). Although
- 14 the data collected from this strategy may support public health protection, the
- 15 **focus of the strategy is to collect and use data to support water quality**
- 16 **management decisions**. This strategy is scoped to cover cyanobacterial harmful
- 17 algal blooms in the legal Delta. With this scope in mind, we hope that this document
- 18 will provide a starting point for approaching the development of monitoring plan(s)
- 19 for the Delta in a stepwise manner. The Delta CHABs monitoring strategy can
- 20 eventually be expanded to cover additional focus areas (e.g., public health
- 21 protection) through separate efforts.
- 22 1.5.2 Items Not Covered
- 23 Although HABs in general have impacted various parts of the greater San Francisco
- 24 Estuary, this strategy document proposes **limiting the scope to cyanobacterial**
- 25 HABs (CHABs) and the Delta. This allows HABs monitoring practitioners,
- researchers, and decision makers to focus on a very complex problem in a stepwisemanner.
- 28 As such, this strategy will not cover:
- Non-cyanobacterial freshwater harmful algal blooms and marine HABs;
- Geographic area outside the legal Delta boundary (Figure 1);
- Public health protection and response such as:
- 32 o informing the development of thresholds of cyanotoxins on drinking
 33 water or human food sources like fish;

public health epidemiology as a result of acute or chronic CHAB
 exposure.

3 Although not covered, the abovementioned topics are important and this strategy

- 4 may provide some structure or data that could inform them. For additional sources
- 5 on these topics see reviews by Patiño et al. (2023), Kudela et al. (2023), and
- 6 Anderson et al. (2021).

7 2 Existing Knowledge of Delta CHAB Dynamics

- 8 Like many freshwater systems worldwide, the Delta has been experiencing more
- 9 frequent and severe CHAB events (Lehman et al. 2017). Delta CHAB events are
- 10 typically dominated by the potentially toxin-producing genus *Microcystis* which was
- 11 first reported in 1920 (Allen et al. 1920) but was not observed in colonial form until
- 12 1999 (Lehman et al. 2005). Since 1999, *Microcystis* blooms have been occurring in
- 13 the Delta with increasing frequency and severity (Lehman et al. 2017, Lehman et al.
- 14 2022). Other common cyanobacteria which have also been observed with
- 15 increasing frequency in some portions of the Delta include genera such as
- 16 Aphanizomenon, Planktothrix, Dolichospermum, Pseudanabaena and
- 17 Planktolyngbia (Lehman et al. 2008, Spier et al. 2013, Lehman et al. 2017, Lehman
- 18 et al. 2022, Perry et al. 2023).

19 Because a number of natural resource agencies are responsible for protecting the

20 Delta's resources, there are several monitoring programs already in place that

- 21 collect water quality data at fixed stations throughout the Delta. These data are
- 22 freely available to the larger research community, and as a result, much of the
- 23 published literature on CHABs are from special studies that have leveraged data
- collected as part of these established water quality programs. However, methods
- 25 employed, or types of data collected, in these programs may not be perfectly suited
- 26 for CHAB monitoring. For example, methods employed for water column sampling
- 27 may not specifically target CHAB species, or sampling locations may be outside of
- 28 the areas where CHABs are most severe, to mention a few. To identify monitoring
- 29 gaps, needs, and future monitoring priorities it is beneficial to have an overview of
- 30 the water quality data collected to date that is particularly relevant for CHAB
- 31 monitoring. The following sections synthesize known data on phytoplankton
- 32 biomass levels in the Delta (section 2.1.1 and 2.1.2), Delta-specific CHAB community
- 33 composition (section 2.1.3), cyanotoxin detections (section 2.2), and the
- 34 environmental drivers (section 2.3) related to emergence and growth of
- 35 cyanobacteria in the Delta. Data sources for these sections include the repositories

- 1 established by agencies such as the Department of Water Resources (DWR) and the
- 2 California Department of Fish and Wildlife (CDFW).⁹
- 3 2.1 Phytoplankton

4 2.1.1 Biomass measurements

- 5 Phytoplankton biomass is typically measured as the concentration of the light
- 6 harvesting pigment chlorophyll-a (chl-a). Chl-a is common to all phytoplankton,
- 7 including eukaryotic phytoplankton such as diatoms and prokaryotic phytoplankton
- 8 such as cyanobacteria. Chl-a is considered a standard water quality measurement
- 9 and is routinely collected throughout the San Francisco Estuary and the Delta (e.g.
- 10 Jassby et al. 2002, Cloern and Jassby 2012, Sutula et al. 2017). It is also routinely
- 11 used throughout most of the world to gauge whether a system is supporting
- 12 unsustainably high densities of phytoplankton that can lead to water quality
- 13 impacts including low dissolved oxygen concentrations (e.g. Nixon et al. 1995, Hagy
- 14 et al. 2004, Kemp et al. 2005, Rabalais et al. 2014).
- 15 Specifically, mean summertime chl-a concentrations are often used to classify the
- 16 trophic status of estuaries as eutrophic, mesotrophic, or oligotrophic and for
- 17 establishing criteria that are protective of beneficial uses (Bricker et al. 2003,
- 18 Carstensen et al. 2011, Harding et al. 2014, Sutula et al. 2017). Recent data for the
- 19 past 5 years collected by DWR through their Environmental Monitoring Program
- 20 (EMP) and North Central Regional Office (NCRO) program demonstrates that mean
- 21 summertime chl-a concentrations typically vary between 1.5-4.0 μg/L at most
- 22 locations in the central Delta (Figure 3).
- 23 In the south Delta, where the channels are less influenced by tidal exchange and
- 24 have longer residence times, concentrations are typically greater and more variable
- 25 than in other parts of the Delta (Figure 3). Mean summertime south Delta chl-a
- 26 concentrations range from 2.5-8.0 μ g/L, but in years with algal blooms can reach up
- 27 to 40 μg/L (Perry et al. 2023).
- 28 Compared with other estuaries world-wide with similar levels of nutrient loading,
- 29 mean summertime chl-a concentrations in the Delta are considered low. In a global
- 30 comparison of chl-a concentrations in 12 estuaries, Jassby et al. (2002) found that

⁹ Data included in this draft version of the Delta CHABs Monitoring Strategy is not yet fully complete. The authors intend to include additional South Delta data for the final release.

- 1 the Delta ranked fourth from the bottom with a Delta-wide, mean summertime chl-
- 2 a concentration of 5.2 \pm 0.7 ug/L (Jassby et al. 2002).
- 3 Low, mean concentrations of chl-a are reflected in relatively low thresholds for chl-a
- 4 concentrations that constitute "bloom" conditions for the San Francisco Estuary. For
- 5 example, using occurrences of total phytoplankton biomass exceeding the 99th
- 6 percentile of a seasonal mean described by a periodic spline function, Carstens et
- 7 al. (2015) characterized a bloom threshold for the San Francisco Estuary of
- 8 approximately 300 µg carbon per liter (C/L), equivalent to 12 µg chl-a/L (i.e. using a
- 9 C:chl-a ratio of 25). This is close to a threshold of 13 μ g chl-a/L characterized by
- 10 Sutula et al. (2017) for the San Francisco Estuary using a different statistical
- 11 approach.

12

Figure 3. Chl-a concentrations averaged across the summer season (June-September) and recent time period (years 2017-2022) for individual stations in the Delta. Chl-a data from EMP and NCRO programs.

- 1 In addition to chl-a, phytoplankton contain accessory pigments that are useful as
- 2 taxonomic markers because some are unique within broader taxonomic
- 3 phytoplankton groups (Mackey et al. 1996, Jeffrey et al. 2011, Kramer and Siegel
- 4 2019). These pigments occur in specific ratios with chl-a in the cell (e.g. Mackey et
- 5 al. 1996) and can be measured chemically (Hooker and Van Heukelem 2011) or via
- 6 fluorescence (Bertone et al. 2018). For example, cyanobacteria contain a unique
- 7 light harvesting system called the phycobilisome composed of three different
- 8 pigment-protein complexes, including allophycocyanin, phycocyanin, and
- 9 phycoerythrin that function cooperatively with chlorophyll to increase the efficiency
- 10 of light harvesting for photosynthesis (Ting et al. 2002, Berg et al. 2011).
- 11 Phycocyanin fluorescence (f-PC) is increasingly used to quantify cyanobacteria *in*
- 12 *situ* and is a rapid, non-invasive technique for quantifying CHAB occurrences
- 13 (Bertone et al. 2018). In the Delta, recent f-PC measurements have demonstrated
- 14 relative differences in cyanobacterial biomass in specific regions such as Franks
- 15 Tract and Mildred Island (Hartman et al. 2022).

16 Monitoring Considerations

- 17 Measurement of phycocyanin concentrations can be used as a surrogate for
- 18 freshwater cyanobacteria biomass specifically, just as chl-a is used as a surrogate
- 19 for total phytoplankton biomass. However, it can be challenging to compare f-PC
- 20 with chl-a fluorescence because cellular PC:chl-a ratios in cyanobacteria are
- 21 influenced by factors such as cell volume, cyanobacterial colony morphology and
- 22 geometry, nutritional state, and growth phase (Kong et al. 2014, Bertone et al. 2019,
- 23 Choo et al. 2019, Ma et al. 2022, Rousso et al. 2022), and therefore can be highly
- variable (Foy 1993). This makes it difficult to convert PC to cyanobacterial biomass
- estimates, and to differentiate the proportion of the total phytoplankton
- 26 community biomass that is comprised of cyanobacteria (Ma et al. 2022, Rousso et
- al. 2022). Nevertheless, phycocyanin readings can give a general indication of
- 28 cyanobacterial presence and relative changes in cyanobacterial biomass.

29 2.1.2 Remote Sensing

- 30 Remote sensing is another tool that can be used to estimate phytoplankton
- 31 biomass. This method measures color reflected off the surface of the water via
- 32 satellite and converts the color reading to pigment concentrations via algorithms.
- 33 The advantage of using satellite remote sensing is the synoptic view over which
- 34 data can be acquired. For example, the National Aeronautics Space Agency (NASA)
- 35 and European Space Agency (ESA) ocean color images are used by the National

- 1 Oceanic and Atmospheric Administration (NOAA) to forecast HABs
- 2 (<u>https://coastalscience.noaa.gov/about/</u>).
- 3 In California, an ocean color visualization tool was developed as a partnership
- 4 between NOAA, the California Surface Water Ambient Monitoring Program
- 5 (SWAMP), and the San Francisco Estuary Institute (SFEI). SFEI stores and collates
- 6 data that is acquired from ESA's satellite Sentinel-3 and post processed by NOAA
- 7 with Ocean Land Color Imager (OLCI) to produce a cyanobacterial index that
- 8 estimate cyanobacterial concentrations (Wynne et al. 2020). The web-based tool to
- 9 visualize the data, with a spatial resolution of 300 by 300 meters, is hosted by SFEI.
- 10 A beta version of the OLCI to determine chl-a data was released July 2023.
- 11 Monitoring Considerations
- 12 In the Delta, the cyanobacterial index is a good resource for visualizing
- 13 cyanobacterial blooms over larger areas given the resolution of 300 by 300 meters
- 14 but is currently not available for smaller waterways which comprise much of the
- 15 Delta. However, this index is useful for providing early warnings of CHABs in the
- 16 western portions of the Sacramento and San Joaquin Rivers, Franks Tract, Mildred
- 17 Island, Clifton Court Forebay, and Liberty Island. Although this dataset goes back to
- 18 2016, Delta satellite data has never been evaluated for status and trends of algal
- 19 blooms. Efforts are underway to obtain imaging from satellite Sentinel-2 which
- 20 would provide finer resolution and provide more useful information for Delta
- 21 waterways.
- 22 2.1.3 Phytoplankton identification
- 23 Microscopy remains the most commonly used method for phytoplankton
- 24 identification and enumeration. Recently, a variety of additional techniques,
- 25 including molecular methods, are available for characterizing phytoplankton and
- 26 cyanobacterial community composition (Janse et al. 2003, Otten et al. 2017).
- 27 Microscopy has been the most commonly employed method for analyzing
- 28 cyanobacterial community composition in Delta water samples and has been used
- 29 to identify 16 different cyanobacterial genera to date (Spier et al. 2013, Lehman
- 30 2022, Richardson et al. 2023, Hartman et al. 2022). In addition to enumeration of
- 31 cell abundances, microscopy has been used to determine cyanobacterial biomass
- 32 by measuring the volumes of individual cells or colonies.
- 33 As mentioned above, Delta CHAB events are typically dominated by blooms of
- 34 *Microcystis* (Lehman et al. 2017, Lehman et al. 2022) and microscopic enumeration

- 1 of *Microcystis* colony units has been incorporated into routine monitoring at certain
- 2 stations throughout the Delta.
- 3 Recent data collected by the EMP shows that the abundances of *Microcystis*
- 4 colonies tend to be the greatest in Clifton Court in the south Delta and in the San
- 5 Joaquin River near Vernalis (Figure 4). Colony abundances decrease from the middle
- 6 of the San Joaquin River towards the confluence; the lower Sacramento River has
- 7 abundances an order of magnitude, or more, lower. In the Sacramento River
- 8 proper, and in Suisun Bay, *Microcystis* colonies are typically not detected (Figure 4).
- 9 Figure 4. Abundance of *Microcystis* units (Units/ml) analyzed microscopically averaged across the summer season

10 (June–September) and recent time period (years 2017–2022) for individual stations in the Delta. *Microcystis* colony abundance data from EMP program courtesy of Tiffany Brown and DWR.

- 12 A growing number of studies in the Delta are using molecular methods to monitor
- 13 cyanobacteria. The most widespread technique to identify the presence of specific
- 14 cyanobacteria genera is to amplify the gene encoding the small subunit (16S) of
- 15 ribosomal RNA using quantitative polymerase chain reaction (qPCR) (i.e., 16S rRNA
- 16 amplification). Portions of the 16S rRNA gene sequence are highly conserved
- 17 among all bacteria, including cyanobacteria, and this method can generally be used

- 1 to enumerate total cyanobacteria or a specific genus of cyanobacteria (Janse et al.
- 2 2003). To evaluate species of cyanobacteria present in the community that are
- 3 potentially toxigenic (i.e., produce cyanotoxins), qPCR of 16S rRNA sequences can
- 4 be combined with qPCR of DNA sequences encoding toxin production genes. For
- 5 example, a commonly used gene to detect potential microcystin toxin production is
- 6 the microcystin synthase B (*mcyB*) gene. Quantitative amplification of a region of
- 7 the *mcyB* gene combined with amplification of 16S rRNA can give insight into
- 8 toxigenic *Microcystis* strain composition (Otten et al. 2017). RNA-based qPCR is
- 9 useful for determining the relative abundances of single cells and small colonies
- 10 that are too small to enumerate quantitatively by microscopy.
- 11 RNA-based qPCR has been used to measure total cyanobacteria and the percent
- 12 abundance of the most common Delta cyanobacteria genera such as *Microcystis*,
- 13 Aphanizomenon, and Dolichospermum (Lehman et al. 2017). RNA-based qPCR have
- 14 confirmed that the abundance of cyanobacteria is likely dominated by genera that
- 15 are less than 10 μm (Lehman et al. 2017). For example, small single-celled
- 16 cyanobacteria such as *Synechococcus* are often present in background populations
- 17 (Lehman et al. 2017, Kimmerer et al. 2018). These unicellular cyanobacteria are
- 18 difficult to observe and generally not considered nuisance populations, thus they
- 19 are commonly discounted in surveys of cyanobacterial populations. However, some
- 20 of the unicellular cyanobacteria genera such as *Synechococcus* can also produce
- 21 cyanotoxins (e.g., Vareli et al 2012, Kopfmann et al., 2016) and contribute to the
- 22 pigment signal used to measure cyanobacteria.

23 *Monitoring Considerations*

- 24 Microscopic examinations indicate that Microcystis dominates in terms of the
- 25 biomass of cyanobacteria. In contrast, RNA-based qPCR methods show that singled-
- 26 celled cyanobacteria actually dominate the Delta cyanobacteria community.
- 27 Although microscopy is useful for determining the most problematic cyanobacteria
- 28 biomass, RNA methods are important for determining the picocyanobacterial
- 29 community. Thus, the cyanobacteria communities generated by each method
- 30 currently are complementary, not identical (MacKiegen et al. 2022). As such,
- 31 monitoring efforts should consider a combined-method strategy to fully
- 32 understand the cyanobacteria community in the Delta. It is also important to
- 33 recognize that microscopy results may vary based on the laboratory conducting the
- 34 analysis whereas RNA based methods are more comparable across laboratories. As

- such, microscopy results may not be useful for evaluating statuses and trends if
 utilizing data sets generated in different laboratories.
- 3

4 2.1.4 Visual Identification

- 5 Unique to the Delta is the development and implementation of a visual index for
- 6 ranking of relative *Microcystis* colony densities. Albeit qualitative, this is the most
- 7 comprehensive CHAB dataset across the Delta. Called the *Microcystis* visual index
- 8 (MVI), data for this index has been collected monthly at discrete stations since
- 9 approximately 2007 by DWR and CDFW. MVI data are also collected
- 10 opportunistically by other researchers and agencies. These programs rely on the
- 11 same visual ranking scale that takes advantage of the relative ease of identification
- 12 of *Microcystis* colonies floating on the surface of the water and gives a general idea
- 13 of when and where blooms of *Microcystis* occur in the Delta. This method is
- 14 performed by ranking the density of colonies in the water or in a bucket according
- 15 to a scale from 1-5 where 1 is absent and 5 is relatively high as depicted in Figure 5.

- 16
- 17 Figure 5. Microcystis visual index (Flynn et al. 2022)
- 18 For the past five years, the greatest frequencies of MVI Levels 4 and 5 have
- 19 occurred close to Clifton Court in the south Delta, at Mildred Island, and the Middle
- 20 and upper San Joaquin River (Figure 6A). These observations are consistent with the
- 21 greatest mean summertime *Microcystis* colony abundances presented in Figure 4.
- 22 While combined Level 4+5 frequencies (i.e., relatively high colony abundance for the
- 23 Delta) typically occur at only select stations in the Delta, combined Level 3+4+5 MVI
- 24 frequencies occur much more commonly throughout the Delta, including at
- 25 stations surrounding Mildred Island, most of the San Joaquin River, Old River south
- 26 of Franks Tract, and in Franks Tract (Figure 6B).
- 27

1

(Frequency=Count_{level}/Count_{sumlevels}) and (B) frequency of occurrence of MVI levels 3+4+5, for the summer season

(June–September) and recent time period (years 2017–2022) for individual stations in the Delta. Data available at:

6 (https://portal.edirepository.org/nis/mapbrowse?packageid=edi.731.7).

- 1 In an analysis of the rank distribution of Level 1 frequencies (i.e. *Microcystis* absent
- 2 from the water) by region, only the 25th percentile rank included regions with Level
- 3 4 and 5 occurrences. These regions recorded Level 4 observations annually starting
- 4 in 2012, and Level 5 observations close to annually starting in 2016, suggesting that
- 5 the occurrences of Level 4+5 observations are on the rise in specific regions within
- 6 the Delta (ESA 2022).
- 7 Monitoring Considerations
- 8 It is important to note that the assignment of Levels in this index are subject to
- 9 individual observer bias. As such, improvements to standardize the visualization
- 10 step with this method can be recommended (perhaps by use of bucket combined
- 11 with digital photograph). Other recommendations may include a step-by-step
- 12 written protocol (see Flynn et al. 2022), and the establishment of a training program
- 13 to ensure more consistent and reliable scoring among agencies and staff.
- 14 2.2 Cyanotoxins
- 15 Concomitant with CHAB events, cyanotoxin detections have been growing in
- 16 frequency and severity. Due to the high costs associated with toxin analyses,
- 17 cyanotoxin monitoring has generally been associated with special studies or by
- 18 opportunistic bloom response sampling. Further complicating toxin monitoring
- 19 efforts, cyanotoxins are ephemeral and episodic. To date, microcystins have been
- 20 the most monitored and detected cyanotoxin group throughout the Delta (Lehman
- et al. 2021, Kudela et al. 2023), with concentrations attributed to *Microcystis* (Otten
- et al. 2017). Thus, microcystins are discussed separately below from the other
- 23 cyanotoxins that have been monitored less frequently, only detected occasionally,
- 24 and detected at low concentrations.
- 25 For a synthesis of marine and brackish HAB toxins in San Francisco Estuary see
- 26 Kudela et al. (2023).
- **27** *2.2.1 Microcystins*
- 28 Hepatotoxic microcystins, produced by a number of genera including, *Microcystis*,
- are recognized as the most common global cyanotoxin (Harke et al. 2016, Preece et
- al. 2017). Indeed, microcystins are the most frequently detected cyanotoxin in the
- 31 Delta. The highest microcystin concentrations have been measured in edge water
- 32 habitats and hydrologically isolated dead-end sloughs (CCHAB Network 2022,
- 33 <u>https://mywaterquality.ca.gov/monitoring_council/cyanohab_network/,</u>Robertson-
- Bryan, Inc. 2023). This is exemplified in the dead-end Stockton Waterfront, an area

- 1 known for dense CHABs. At this location in 2020, microcystins measured 1,239 µg/L
- 2 in a scum sample and 61.1 µg/L in the surrounding water in 2020 (CCHAB Network
- 3 2022, https://mywaterquality.ca.gov/monitoring_council/cyanohab_network/). In
- 4 contrast, open water areas of the Delta where dispersed flakes of *Microcystis*
- 5 dominate (instead of small dense colonies), toxin concentrations are typically below
- 6 the CCHAB Network's <u>Danger trigger</u> (i.e., 20 μg/L) and generally below the
- 7 California Warning trigger of 6 µg/L (Lehman et al. 2017, Robertson-Bryan, Inc.
- 8 2023, *Personal Communication, Brianne Sakata, April 2023*). Concentrations are
- 9 also frequently below the California Caution trigger of 0.8 μg/L (Lehman et al. 2017,
- 10 Lehman et al. 2022). However, this is a limited dataset and cannot be extrapolated
- 11 to all open water areas of the Delta.
- 12 In addition to being detected in water samples, microcystins have also been found
- 13 in sediments, zooplankton, fish, and shellfish within the Delta (Lehman et al. 2010,
- 14 Bolotaolo et al. 2020, *Personal Communication, Tim Otten, January 15, 2024*). For
- 15 example, tissue lesions consistent with liver toxins were documented in Inland
- 16 Silversides (*Menidia beryllina*) and in juvenile Striped Bass (*Morone saxatilis*) caught
- 17 during *Microcystis* blooms (Lehman et al. 2010).
- 18 Monitoring Considerations
- 19 Microcystins are generally most concentrated in edge water habitats such as dead-
- 20 end sloughs and marinas where dense colonies are more likely to occur. Yet, toxin
- 21 monitoring in these areas is reactionary and thus, there is no consistent or long-
- 22 term toxin data for these locations. Routine microcystin monitoring has been
- 23 implemented in a few open water areas of the Delta (e.g., Clifton Court Forebay,
- 24 Banks Pumping Plant). However, a majority of the Delta has no routine microcystin
- 25 monitoring.

26 2.2.2 Other Cyanotoxins

- 27 Low concentrations of anatoxin-a, saxitoxin, lyngbyatoxin, cylindrospermopsin, and
- 28 anabaenopeptins have been detected occasionally where short-term studies
- 29 funded analysis of additional toxins besides microcystins (Lehman et al. 2005, 2010,
- 30 2021, Mioni et al. 2011). Because toxin monitoring has primarily focused on
- 31 measuring microcystin, it is unknown if other toxins are newer to the system or if
- 32 the toxins have been missed due to a lack of monitoring. Notably, a recent two-year
- 33 study on cyanotoxins found no saxitoxin in Asian clam samples at locations across
- 34 the Delta (*Personal Communication, Tim Otten, January 15, 2024*).

- 1 These other toxins are commonly found at lower concentrations and have generally
- 2 been detected via solid phase adsorption toxin tracking (SPATT) samplers that have
- 3 recently become incorporated into some discrete monitoring stations and in boat-
- 4 based mapping surveys. Occasionally anatoxin-a has been detected in whole water
- 5 grab samples (*Personal Communication, Keith Bouma-Gregson, February 2024*).
- 6 SPATT samplers are exposed to water for longer durations and more sensitive than
- 7 water grab samples at lower concentrations. However, at high and ephemeral
- 8 concentrations of toxins a SPATT sampler may reflect this bias and not be
- 9 representative of average concentrations, but rather represent an integrated toxin
- 10 concentration over the time of their deployment. As a result, grab and SPATT
- 11 sampling methods are not comparable to one another, but are complimentary (e.g.,
- 12 Kudela 2011, Berg and Sutula 2015, Howard et al. 2017, Peacock et al. 2018).
- 13 Notably, water grab samples collected as part of the routine cyanotoxin monitoring
- 14 program at Clifton Court Forebay and Banks Pumping Plant have not detected any
- 15 cylindrospermopsin, or anatoxin-a between 2014 to 2022 (*Personal*
- 16 *Communication, Brianne Sakata, April 2023*).
- 17 Monitoring Considerations
- 18 A lack of cyanotoxin monitoring has made it difficult to determine where and when
- 19 these other cyanotoxins may be present. SPATT samplers are an important tool
- 20 that can be used to complement grab samples and to improve our understanding
- 21 of toxin dynamics within a system.

22 2.3 Drivers of Delta CHABs

- Knowing when and where CHABs will form is very difficult. Part of the process of 23 24 getting closer to being able to predict their occurrences includes understanding 25 how environmental drivers impact the frequency, magnitude, and intensity of their 26 occurrences, as well as their toxicity. . While the word "driver" suggests a positive 27 impact in terms of growth, there are also negative drivers which limit the growth of 28 different CHAB species. Negative drivers may include processes such as sediment 29 resuspension, which decreases light availability, water flow rate, which shortens 30 residence time and time to grow in a region, and salinity, which may limit the 31 distribution of a CHAB event to the freshwater and low salinity reaches of the San 32 Francisco Estuary. These negative drivers work in tandem with positive drivers such 33 as nutrients, temperature, and water column light availability to control
- 34 cyanobacterial growth rates and ultimately CHAB occurrences. Below we discuss

- 1 some of the drivers that have been suggested to play a role in CHAB occurrences in
- 2 the Delta (e.g. Lehman et al. 2013, Berg and Sutula 2015, Lehman et al. 2017).

Figure 7. Conceptual model for CHAB drivers in the Delta.

1

Top panel: Different physical environments provided by Delta waterways that influence CHAB development, including
 (A) dead end channels and marinas, (B) main channels, and (C) flooded islands with submerged aquatic vegetation
 (SAV) and wildlife. Processes that interact with these different types of physical environments include input of point
 and non-point nutrient sources, stream flow and tidal forcing, water exports, and atmospheric deposition.

8 Bottom panels: Representations of water column characteristics of

9 (A) Dead-end channels and marinas with weaker stream flow, weaker vertical mixing, lower degree of sediment 10 resuspension, clearer water column, and longer residence times leading to less dilution of CHAB species and 11 potentially higher primary productivity compared with the main channel. Less dilution can also result in a stronger 12 coupling with the sediments aiding exchange of materials including nutrients. In this environment, Microcystis colony 13 size may decrease, and colonies may become denser and more evenly distributed throughout the water column. 14 (B) Main channels with strong stream flow, lateral advection, tidal forcing, continuous vertical mixing (i.e. no change in 15 temperature with depth), and a high degree of sediment resuspension. In this environment, CHAB species such as 16 Microcystis are mixed from the top to the bottom of the water column, and spend limited time in the euphotic zone as 17 the ratio of euphotic zone depth (Z_e) to total mixed water depth (Z_m), i.e. Z_e:Z_m may be 0.5 or less. Both limited time in 18 the euphotic zone and vigorous physical mixing may produce lower growth rates and a colony morphology similar to 19 small pieces of lettuce that are evenly distributed throughout the water column. In addition to vertical mixing, colony 20 densities may also be limited by relatively short residence times and dilution.

(C) *Flooded islands* influenced by stream flow, lateral advection, and tidal forcings but with decreased depth and a
 Z_e:Z_m ratio of 0.5 or greater which potentially result in greater CHAB species productivity, but also greater contact and
 exchange with sediments containing filter-feeding grazers such as clams and SAVs competing for nutrients and
 resources. Both dead-end channels and flooded islands may be representative of *Microcystis* hot-spots in the Delta
 that may contain cysts in the sediments that allow blooms to re-establish from year to year.

26 2.3.1 Stream Flow and Residence Time

27 Blooms of cyanobacteria are sensitive to stream flow and water residence time 28 both directly, by the rate that cells are flushed out of a region, and indirectly though 29 changes in vertical mixing and turbidity following variations in stream flow (Paerl 30 2008). Over a Delta-wide scale, residence time (i.e. the time it takes to exchange the 31 volume of water within a certain region) is primarily controlled by inflow. Inflow is 32 driven by the combined streamflow in the Sacramento and San Joaquin Rivers, with 33 the Sacramento River comprising approximately 83% of the total from these two 34 sources (Arthur et al. 1996, Cloern and Jassby 2012). Outflow from the Delta 35 constitutes the difference between inflow and water diversions to the state and 36 federal pumping projects (i.e. exports) and typically varies around 70% of inflow on 37 an annual basis (Monismith et al. 2002, Kimmerer 2004, Cloern and Jassby 2012). 38 Inflow to the Delta varies substantially with precipitation and drought, with wet 39 years greatly reducing residence time during the winter and spring months (Jassby et al. 1995, Kimmerer 2004). A useful index of the interannual variability in inflow is 40 represented by "X2" which is the distance from the Golden Gate Bridge up the axis 41 42 of the San Francisco Estuary to where the tidally averaged near-bottom salinity is 2 43 parts per thousand (Jassby et al. 1995). This distance typically ranges from 70 to 80

1 km, being closer to the higher end of the range in a drought year and the lower end

2 of the range in wet years (Cloern and Jassby 2012). Decreased inflow to the Delta

- 3 typically occurs during the July–September period, which coincides with peak water
- 4 temperatures (Lehman et al. 2022). On a Delta-wide annual scale, inflow is inversely
- 5 related to phytoplankton biomass accumulation (Jassby 2008).

6 Over smaller, regional scales, residence time is controlled by the combined

- 7 interaction of tides, diversions, and physical characteristics of the channels (Gross
- 8 et al. 2019). At this scale, differences in residence time can be evident on the spring-
- 9 neap tidal cycle (Kimmerer 2004). During periods of low Delta inflow and outflow,
- 10 flow modifications including salinity barriers and operation of gates such as the
- 11 Delta Cross Channel may influence residence time in localized regions (Kimmerer et
- 12 al. 2019).
- 13 Compared with the main channels that intersect the Delta, there are a number of

14 locations such as dead-end channels and sloughs, marinas, and edge water

15 habitats that have lower tidal or riverine velocity and lower water exchange with

- 16 surrounding areas (Downing et al. 2016, Lenoch et al. 2021). Whereas relatively
- 17 high-velocity flows serve to maintain low residence times and high flushing rates,
- 18 preventing accumulation of phytoplankton biomass in the main channels (Jassby et
- al. 2002, Jassby 2008), increases in chl-a concentrations is evident in dead-end

20 channels and sloughs as exchange with connecting main channels decreases during

- 21 the summer period (Schemel et al. 2004). This occurs in deeper dead-end channels
- 22 as well as shallower dead-end floodplains, underscoring the importance of
- 23 residence time in the accumulation of phytoplankton, including CHAB, biomass
- 24 (Lehman et al. 2008, Downing et al. 2016, Loken et al. 2022, Preece et al. 2024).
- 25 Referred to as "hotspots", a number of these hydrologically isolated dead-end
- 26 sloughs have the potential for acting as CHAB incubators that seed surrounding
- 27 waterways with CHAB cells (Spier et al. 2013, Preece et al. 2024). Potential
- 28 influences in flow dynamics on CHAB biomass accumulations are represented in
- 29 Figure 7 moving from a relatively fast-flowing channel (Panel B) to a dead-end
- 30 slough (Panel A).

31 2.3.2 Sediment Resuspension and Water Column Light Availability

32 The main impact of sediment resuspension on CHABs is by limiting availability of

light needed for photosynthesis and for growth (Visser et al. 20105). This is

- 34 because resuspended sediments rapidly attenuate light with depth and restrict
- 35 photosynthesis to the top layer of the water column (i.e. the euphotic zone). As a

- 1 result, productivity decreases the more time phytoplankton spend below the
- 2 euphotic zone, and growth rates tend to vary inversely with mixed layer depth
- 3 (Cloern 1987, Alpine & Cloern 1988, Lucas and Cloern 2002, Mussen et al. 2023). For
- 4 CHAB species such as *Microcystis* that have low photosynthetic efficiencies (e.g. Wu
- 5 et al. 2009) and require exposure to continuous light in order to reach maximal
- 6 growth rates (Mitrovic et al. 2003), mixing out of the euphotic zone and being
- 7 exposed to fluctuating light restricts their growth (Mitrovic et al. 2003, Visser et al.
- 8 2015).
- 9 A persistent feature of the San Francisco Estuary, including the Delta, is the intense
- 10 mixing of the water column due to tidal oscillations (Cloern 1991, Kimmerer 2004).
- 11 High-energy tidal forcing combined with riverine sediment transport (i.e. McDonald
- 12 and Chang 1997, Schoellhamer et al. 2012) leads to high suspended sediment
- 13 concentrations and turbidity (Cloern 1987, May et al. 2003. Thus, mixing and
- 14 sediment resuspension may be important negative drivers for CHAB occurrences in
- 15 the Delta. Although not specifically investigated for the Delta, it is hypothesized that
- 16 succession of various CHAB species could be connected with irradiance
- 17 requirements. For example, *Microcystis* may be replaced by others such as
- 18 Aphanizomenon as water flow and mixing increases (Lehman et al. 2022). Under
- 19 even stronger mixing regimes, CHAB species may be replaced by eukaryotic green
- 20 algae (Ibelings et al. 1994, Huisman et al. 1999). Summertime algal blooms in the
- 21 Delta are mostly comprised of either green algae or filamentous or colonial
- 22 cyanobacteria (Lehman et al. 2017), suggesting these two groups may occupy
- 23 different niches based on, among other factors, water column mixing intensity.
- 24 *2.3.3 Salinity*
- 25 Most freshwater cyanobacteria cannot survive for extended periods of time in
- 26 saline waters and therefore salinity can act as barrier to, and negative driver of,
- 27 blooms (e.g. Sellner et al. 1988) However, some genera have a relatively high salt
- 28 tolerance (Patiño et al. 2023). *Microcystis* has one of the highest salinity thresholds
- 29 of all freshwater cyanobacteria. Literature reports generally agree that *Microcystis*
- 30 has a salt tolerance of around ≤10 ppt (Preece et al. 2017). However, the
- 31 adaptability and/or acclimation of some *Microcystis* strains to higher salinities
- 32 allows cells to persist in more saline environments. This is exemplified in a study by
- 33 Miller et al. (2010) that showed survival in seawater (average salinity of 35 ppt) for
- up to 48 hours. Salinity throughout most of the Delta is well below the 10 ppt salt
- 35 tolerance threshold for *Microcystis* (Figure 8). Although *Microcystis* has been

- 1 documented at salinities up to 18 ppt in the San Francisco Estuary just downstream
- 2 of the Delta, it is likely to be stressed and not actively multiplying under these
- 3 conditions (Lehman et al. 2005). Fewer studies have addressed the salt tolerances
- 4 of other cyanobacteria species. Based on available literature it appears that the
- 5 salinity tolerance of *Dolichospermum* and *Anabaenopsis* is similar to that of
- 6 *Microcystis* (Moisander et al. 2002, Kemp and John 2006, Tolar 2014).

7

Figure 8. Boxplots of salinity by month and by region for the period 2008-2022. CD=Central Delta; CSC=Cache Slough
 Complex; ED=East Delta; LSR=Lower Sacramento River; SD=South Delta; SJR=San Joaquin River. Data from the Fall
 Midwater Trawl Survey (FMWT), Summer Townet Survey (STN), DWR-EMP, and DWR-NCRO monitoring programs
 available at: (<u>https://portal.edirepository.org/nis/mapbrowse?packageid=edi.731.7</u>).

- 12 Although *Microcystis* can survive at the salinities described above, *Microcystis*
- 13 growth is constrained in more saline environments. Salinity impacts *Microcystis*
- 14 physiology and growth through osmotic and ionic stresses that cause the inner
- 15 membrane structure to contract. This disturbs the cellular osmotic balance,
- 16 transport processes, and solubility of intracellular CO₂ and O₂ thereby slowing
- 17 growth (Hageman 2011). Nevertheless, *Microcystis* cells have been shown to grow

- 1 in a range of salinities (Otsuka et al. 1999, Tonk et al. 2007, Zhang et al. 2013, Qiu et
- 2 al. 2022). Optimal salinities for *Microcystis* growth vary based on the system, strain,
- 3 and or different physiological statuses of individual colonies (Bormans et al. 2023).
- 4 Wang et al. (2022) reports optimal *Microcystis* growth occurred at a salinity of 0 ppt
- 5 in the coastal Yuniao River, China and as salinity increased closer to the coast the
- 6 relative abundance of *Microcystis* decreased. In contrast, a laboratory study found
- 7 *M. aeruginosa* growth was higher at 4 and 7 ppt than in the control of 1 ppt (Qiu et
- 8 al. 2022). The authors suggest these higher salinities promoted *M. aeruginosa*
- 9 growth during the early stage of culture, in part because it facilitated
- 10 photosynthesis. The same study found that a salinity of 10 ppt inhibited *M*.
- 11 *aeruginosa* growth and caused irreversible damage to the organism.
- 12 As *M. aeruginosa* is transported through estuarine systems from freshwater to
- 13 more saline environments it can cause cells to undergo a salt shock. This
- 14 immediately decreases photosynthetic activity resulting in decreased growth
- 15 (Georges de Aulnois et al. 2020). However, when cells are gradually exposed to
- 16 increasing salinities, cells are able to acclimate or adapt and continue growing even
- 17 if the cells originated in a lower salinity environment (Melero-Jimenez et al. 2019).
- 18 Salinities of 5 ppt are associated with higher microcystin production due to the
- 19 upregulation of microcystin production genes (Qiu et al. 2022). Thus, *Microcystis*
- 20 with higher salt tolerance have more intracellular toxins than those in lower salinity
- 21 environments (Li et al. 2024). Increased salinity also results in higher osmotic
- 22 pressures that cause *Microcystis* cells to lyse and release toxins into the
- 23 surrounding waters (Preece et al. 2017). Salinities in most of the Delta remain below
- 24 6 ppt (Figure 8), so issues with increased toxin production and cell lysis would be of
- 25 greater concern in waters downstream of the Delta.
- 26

27 2.3.4 Temperature

- 28 Temperature is recognized as one of the strongest positive drivers of CHAB events
- around the world (Pearl and Huisman 2008, Carey et al. 2012). One reason is that
- 30 cyanobacteria achieve higher growth rates at warmer temperatures compared with
- 31 other phytoplankton groups (Berg and Sutula 2015). For example, You et al. (2018)
- 32 found optimal growth rate for *Microcystis* in the laboratory occurs at 27.5°C. In a
- 33 survey of eight cyanobacteria the growth optima of two *M. aeruginosa* strains were
- 34 30–32.5°C and that of *Aphanizomenon gracile* was 32.5°C. Lower growth
- 35 temperature optima were observed in *Cynlindrospermopsis raciborskii* and
- 1 *Planktothrix agardhii*, both 27.5°C, while *Dolichospermum* had an optimum of 25°C
- 2 (Lurling *et al.* 2013). In another survey of six *Microcystis* strains, their temperature
- 3 growth optima varied from 31–37° C (Bui et al. 2018). *Microcystis* also stands out
- 4 with regard to being able to quickly accelerate its growth rate with increases in
- 5 temperature (Carey et al. 2012). While the acceleration of growth rate with every
- 6 10°C increase in temperature (Q10) commonly varies from 1–4 for cyanobacteria in
- 7 general it varies from 4–9 for *Microcystis*, the fastest acceleration recorded for any
- 8 phytoplankton (prokaryotic or eukaryotic) species (Reynolds 2006).

12 DWR-NCRO monitoring programs available at: (https://portal.edirepository.org/nis/mapbrowse?packageid=edi.731.7).

13 CD=Central Delta; CSC=Cache Slough Complex; ED=East Delta; LSR=Lower Sacramento River; SD=South Delta;

- 14 SJR=San Joaquin River.
- 15 Surface water temperatures recorded in the Delta during the summer season are
- 16 usually not as high as the growth optima of the various CHAB species mentioned
- 17 above. However, water temperatures commonly exceed 23°C in Delta waterways
- 18 during July–September, the period of peak CHAB abundance (Lehman et al. 2013).
- 19 Notably, long-term temperature data is almost entirely restricted to main channels.
- 20 In contrast with the main channels where high flushing rates may limit surface
- 21 water temperatures, dead-end sloughs and marinas are more susceptible to higher
- 22 absolute temperatures as well as increases over time. In these locations, surface
- 23 water temperatures from July–September may range from 25–28°C or warmer
- 24 (Preece et al. 2024) and could provide ideal conditions for CHAB species to

Figure 9. Monthly surface water temperatures averaged from daily surface water temperatures by year and by region for the period 2008-2022. Data from the Fall Midwater Trawl Survey (FMWT), Summer Townet Survey (STN), DWR-EMP, and

- 1 outcompete other phytoplankton groups that have lower growth temperature
- 2 optima (Berg and Sutula 2015 and references therein). Although these locations
- 3 appear to have warmer temperatures, limited monitoring of dead-end sloughs and
- 4 marinas had made it difficult to evaluate temperature changes and trends.
- 5 Throughout the Delta, mean monthly surface water temperatures peak in July but
- 6 the absolute July temperature varies substantially by region (Figure 9). The regions
- 7 with the lowest July temperatures are in the northern portion and include the
- 8 Cache Slough Complex region and the lower Sacramento River region (Figure 9).
- 9 The highest recorded mean July surface water temperatures are in the south delta
- 10 region where they have varied from 25.9°C–26.1°C, followed by the San Joaquin
- 11 River varying from 22.8°C–25.1°C, and the central Delta varying from 23.7°C–24.4°C,
- 12 over the last 15 years (Figure 9).
- 13 Perhaps the most interesting month in terms of temperature changes over time in
- 14 the Delta appears to be June. While at the beginning of the record presented in
- 15 Figure 9 average June surface water temperatures varied around 19–20°C, the
- 16 temperature hypothesized to promote the emergence of *Microcystis* from the
- 17 sediments into the water column (Lehman et al. 2017), there has been a significant
- 18 and linear increase in the June temperatures over time in several regions. The
- 19 steepest change has been in the east Delta with an increase of 0.24°C per year,
- 20 followed by the San Joaquin River at 0.15°C per year, and the central Delta at 0.10°C
- 21 per year. Smaller increases have also occurred in the other regions of the Delta but
- are not significant (Table 1) In the south Delta temperatures are high relative to the
- 23 other regions and do not appear to be increasing in the summer months like in the
- 24 other regions (Figure 9). For example, in the south Delta June surface water
- 25 temperatures have not increased significantly, varying between 22.4–22.7°C over
- the 2008–2022 time period (Figure 9, Table 1).

27 Table 1. Regressions of mean June surface water temperatures (°C) as a function of year (2008-2022; n=15) in six

separate regions of the Delta. CD=Central Delta; CSC=Cache Slough Complex; ED=East Delta; LSR=Lower Sacramento
 River; SD=South Delta; SJR=San Joaquin River. Significant slopes in bold.

	Slope	Probability	
Region	(Temp~Year)	Slope	R ²
CD	0.10	0.024	0.34
CSC	0.09	0.132	0.17
ED	0.24	0.005	0.50

SJR	0.15	0.006	0.46
SD	0.06	0.372	0.06
LSR	0.11	0.062	0.24

- 1
- 2 Mean surface water temperatures have also increased for the months of May and

3 October, extending the potential bloom season for *Microcystis* (e.g. Lehman et al.

4 2017), in a number of Delta locations (Figure 9). Previous studies suggest that

5 *Microcystis* can persist in surface waters for eight months or longer as long as

6 temperatures are warmer than 15°C (Lehman et al. 2017, Robertson-Bryan Inc.,

7 2023).

8 *2.3.5 Nutrients*

9 Concentrations of nutrients can influence the composition, magnitude, and

- 10 duration of CHAB events and is an important positive driver (e.g., Paerl 2008,
- 11 Lehman et al. 2017, Wang and Zang 2020, Phlips et al. 2023). Dissolved inorganic
- 12 nitrogen and inorganic phosphorus concentrations are relatively high across all
- 13 regions in the Delta year-round (Figure 10). The two principal sources of these
- 14 nutrients are point-source discharges from publicly owned treatment works
- 15 (POTWs) and agricultural discharges in the form of irrigation return flows and other
- 16 non-point discharges associated with agriculture (Kratzer et al. 2011, Saleh and
- 17 Domalgaski 2015, Dahm et al. 2016). The two primary vehicles for loading of
- 18 nutrients into the Delta are the Sacramento River, a principal source of nutrients
- 19 from POTWs, and the San Joaquin River, a principal source of nutrients from
- 20 agricultural return flows. During summer when inflows and dilutions are at a
- 21 minimum, the San Joaquin River and the Sacramento River each contribute about
- 22 half of the total nitrogen load to the Delta, despite the San Joquin River contributing
- less than 20% of the water flow volume (Kratzer et al. 2011, Novick et al. 2015).

Figure 10. Boxplots of A) DIN (sum of nitrate, nitrite, and ammonium concentrations) and B) ortho-Phosphate, by month and by region for the period 2009-2022. Boxes show median concentration and 25th/75th percentiles; whiskers extend to 1.5x the interquartile range; outliers are shown as black dots. Data from IEP and NCRO programs available at (URL).

- 6 CD=Central Delta; CSC=Cache Slough Complex; ED=East Delta; LSR=Lower Sacramento River; SD=South Delta;
- 7 SJR=San Joaquin River. Data from DWR-EMP and DWR-NCRO monitoring programs available at:
- 8 (https://portal.edirepository.org/nis/mapbrowse?packageid=edi.731.7).

1 Given optimal temperatures and irradiances for growth, the upper bound on

- 2 phytoplankton biomass will be set by the concentration of nutrients available in the
- 3 water. Referred to as the yield of chlorophyll, the magnitude of phytoplankton
- 4 biomass that can be produced per unit nutrient consumed has been investigated
- 5 for freshwater systems based on phosphorus (Dillon and Rigler 1975, Schindler et
- 6 al. 1978) and for estuarine and coastal systems based on nitrogen (Gowen et al.
- 7 1992, Edwards et al. 2003). It is a useful parameter for predicting the size of a
- 8 harmful algal bloom and for predicting eutrophication (Tett et al. 2003). This
- 9 parameter has shown remarkable consistency within pelagic mixed phytoplankton
- 10 communities (i.e. including eukaryotic and prokaryotic phytoplankton groups)
- 11 across the freshwater to marine continuum (Tett et al. 2003). The reason for this
- 12 consistency can be summed up as phytoplankton containing certain amounts of
- 13 chlorophyll consume the same amount of nitrogen regardless of location. For
- 14 example, the yield of chlorophyll from nitrogen (μg chl-a produced per μmol
- 15 nitrogen utilized) in the lower Sacramento River was recently measured by Mussen
- 16 et al. (2023) as 1.3 which is similar to the yield of 1.1 which has been measured in
- 17 Scottish coastal water (Gowen et al. 1992).
- 18 While the yield of chlorophyll can be measured and calculated for any system, it
- 19 cannot be used to predict the degree of eutrophication based on nutrient
- 20 concentrations unless a complete depletion of nutrients occurs in the system. As
- such, the yield of chlorophyll may not be a useful parameter for predicting the
- 22 degree of eutrophication that can be expected in Delta waterways where nutrients
- 23 are not depleted even during months of peak phytoplankton productivity (Jassby et
- 24 al. 2002).
- 25 Because nitrogen and phosphorus are not depleted, nutrients are often referred to
- 26 as being in "excess" of phytoplankton growth requirements in the Delta (Jassby et
- al. 2002). Both the term "excess" and the term "limiting" with respect to nutrient
- 28 concentrations are ambiguous. But they can be refined for a given system by
- 29 comparing the potential yield of chlorophyll to the measured concentration of
- 30 chlorophyll. If we define "limitation" as a concentration of nutrients that does not
- allow for a full doubling of existing phytoplankton biomass, and "excess" as a
- 32 concentration of nutrients that allows two or more doublings of phytoplankton
- 33 biomass then we can describe all the different regions of the Delta using a
- chlorophyll yield of 1.1 (e.g. Gowen et al. 1992). Focusing on the summer season,
- 35 concentrations of dissolved inorganic nitrogen (DIN), i.e. the summed
- 36 concentrations of nitrate, nitrite, and ammonium, typically varies from 8–20 µmol/L

- 1 in the central Delta to 27–63 µmol/L in the south Delta (Figure 10A). Compared with
- 2 measured chl-a concentrations of 2–4 µg/L in the central Delta and 6–26 µg/L in the
- 3 south Delta (Figure 3), phytoplankton biomass could double two or more times.
- 4 Therefore, we can describe DIN as being in excess of phytoplankton demand in all
- 5 regions of the Delta.
- 6 One reason for phytoplankton biomass being low relative to the available nutrient
- 7 pool has been discussed above and is related to light limitation of phytoplankton
- 8 growth due to water column mixing and sediment resuspension (section 2.3.1). This
- 9 is a physiological limitation. Other limitations at the population level may include
- 10 factors such as grazing (e.g. Lopez et al. 2006) that act in concert with physiological
- 11 limitations to potentially restrict the density of a bloom as well as the geographical
- 12 distribution of CHABs in the Delta.
- 13 A question that comes to mind given the excess of nutrients available in Delta
- 14 waterways is what would happen if conditions, whether it be temperature, mixing,
- 15 sediment resuspension, or grazing, changed and phytoplankton were able to
- 16 deplete the available pool of nutrients? In other words, how bad could
- 17 eutrophication (and potentially CHAB events) become in the main channels if given
- 18 the chance? Again, using the same chlorophyll yield relationship we can add the
- 19 residual water column DIN concentration to the measured chl-a (because the chl-a
- 20 represents DIN that has already been converted into phytoplankton biomass) to
- 21 give the potential chl-a concentration that could be present in the water if nutrients
- 22 were completely drawn down (Figure 11). This exercise demonstrates that the Delta
- 23 phytoplankton community has "room to grow", particularly in the San Joaquin River
- and in the south Delta (Figure 11). Moving into a warmer and hydrologically
- 25 uncertain future, this large and unused nutrient pool may present an increasing
- 26 risk for CHAB events. For an excellent review of the link between nutrients and
- 27 CHAB dynamics, see Ibelings et al. (2021).

Figure 11. Potential chl-a averaged by month and by region for the period 2008-2022. Potential chl-a estimated as the
 sum of measured chl-a (CHL-measured) and chl-a calculated (CHL-calculated) based on the yield of chlorophyll from
 DIN (µg chl:µmol DIN; Gowen et al. 1992). Data from the DWR-IEP and DWR-NCRO programs, available at
 (https://portal.edirepository.org/nis/mapbrowse?packageid=edi.731.7). CD=Central Delta; CSC=Cache Slough Complex;
 ED=East Delta; LSR=Lower Sacramento River; SD=South Delta; SJR=San Joaquin River.

8 2.3.5 Cyanobacteria Seedstock

- 9 Cyanobacteria cells in the water column are subject to a range of fates, including
- 10 physical export, death or dormancy. Dormant cells enter a vegetative state and sink
- 11 out of the water column and into to the sediment. Overwintering vegetative
- 12 *Microcystis* colonies remain photosynthetically active and reenter the water column
- 13 through active resuspension when environmental factors provide favorable growth
- 14 conditions or through passive wind-induce resuspension (Verspagen et al. 2005).
- 15 Once established in a system, this overwintering strategy allows *Microcystis* cells to
- 16 form recurring, seasonal blooms (Cai et al. 2021).
- 17 With no obvious upstream sources for *Microcystis* to enter into the Delta, the most
- 18 likely source of summer blooms within the system is that they originate primarily
- 19 from overwintering *Microcystis* seedstocks that recruit to the water column when
- 20 conditions are favorable.
- 21 A recent study found that the hotspot location of the Stockton Waterfront and
- 22 Discovery Bay had significantly higher seedstock (p<0.05) in April than the six other
- study sites including main channel sites and the flooded islands (*Preece et al., in*
- *review*). However, other locations also retained *Microcystis* seedstock in the spring
- 25 suggesting that multiple locations in the Delta may seed summertime *Microcystis*

- 1 blooms. Further work is necessary to fully elucidate the importance of
- 2 cyanobacteria seedstock as a positive driver of CHABs in the Delta.
- 3

4 3 Overview of Current CHAB Monitoring Efforts

- 5 Although a coordinated program with dedicated funding for monitoring CHABs in
- 6 the Delta does not exist, there are long-term ambient water quality monitoring
- 7 programs in place that generate a remarkable coverage of ancillary data that can
- 8 potentially be used to support CHABs monitoring. In addition, efforts have
- 9 developed over time to monitor a few CHAB-specific parameters, but to date most
- 10 information regarding CHABs in the Delta has been obtained through short-term
- 11 special studies. The fragmented nature of these studies and current monitoring
- 12 efforts highlight the need for the development of a strategy to achieve a
- 13 coordinated and collaborative approach to CHAB monitoring.
- 14 Section 3.1 below describes the long-term continuous and discrete monitoring that
- 15 is in place for water quality in the Delta that can be used to indicate the
- 16 development or presence of CHABs. Maps in this section show the spatial coverage
- 17 of monitoring by various partners. More information regarding the monitoring
- 18 efforts of partners can be found in the <u>Delta HABs Monitoring information sheet</u>.
- 19 A recommendation of this strategy is to compile these a list of current and past
- 20 special studies (Recommendation 4.5).
- 21 3.1 Long-term Continuous and Discrete Monitoring
- 22 Table 2 shows the ongoing monitoring programs for the Delta that collect
- 23 continuous and/or discrete data that can be used to indicate the development or
- 24 presence of a CHABs. The spatial scope describes the general areas in which the
- 25 monitoring program oversees. Individual monitoring sites may have been added,
- 26 removed, or moved by programs over time. Monitoring frequency may also have
- 27 changed over time. The phytoplankton time span column notes when each
- 28 program monitored phytoplankton. The water quality time span notes when the
- 29 first relevant constituents to CHAB monitoring may have been added to these
- 30 monitoring programs midway through the time spans. Thus, in most cases, the full
- 31 dataset these organizations offer is not available for these full time spans. Agencies
- 32 who manage water quality monitoring stations include the DWR, CDFW, USBR, and
- 33 USGS.

- 1 Locations and water quality constituent data of the maps were consolidated from
- 2 the <u>California Data Exchange Center (CDEC</u>), the Environmental Data Initiative (EDI)
- 3 Delta Water Quality Integrated Dataset Package (Bashevkin, Perry, and Stumpner,
- 4 <u>2022</u>), and through personal communication with individual monitoring programs.
- 5 Some stations may have been excluded from the map if they were not listed in
- 6 CDEC or were no longer in service. CDFW stations were not included if data were
- 7 only collected in either summer or fall, rather than in both seasons. Each
- 8 monitoring program samples at an annual level but may occur at different periods
- 9 throughout the year. DWR (Perry et al. 2023) and USGS have the longest time frame
- 10 since the 1970's, and 1990's, respectively though methodological changes prohibit
- 11 using their full extents. Differences in methods and monitoring locations within and
- 12 between monitoring programs mean that some data are not comparable. This
- 13 issue essentially shortens any one dataset and greatly limits the use of the existing
- 14 data for any data intensive project such as forecasting CHABs formations and
- 15 outbreaks. Note the lack of a cyanotoxin map. No long term continually funded
- 16 program collects routine cyanotoxin data at set stations in the Delta.

 Table 2. Temporal and spatial information about the monitoring programs included in Figures 6-10.

Agency	Dataset	Spatial Scope	Monitoring Frequency	Parameters	Phytoplankton Time Span	Water Quality Time Span
DWR	Environmental Monitoring Program	San Pablo Bay, Suisun Bay, Suisun Marsh, Montezuma Slough, Sacramento River, San Joaquin River, Old and Middle Rivers	At least monthly	Phytoplankton ID, MCVI, Chl-a, Nutrients, Temperature, Turbidity, Conductivity, pH, Dissolved Oxygen	1975-present	1975 - present
DWR	Yolo Bypass Fish Monitoring Program	Yolo Bypass, Cache Slough Complex, Sacramento River	Variable, roughly monthly, typicallyPhytoplankton ID Temperature, Tu Conductivity, Dissolved Oxy		1998-present	1998 - present
DWR	Water Quality Evaluation Section	South Delta, Central Delta, North Delta	Monthly	Phytoplankton ID, Chl-a, Temperature, Turbidity, Conductivity, pH, Dissolved Oxygen	2019- present (FlowCam)	1999-present
CDFW	Fish Restoration Program Effectiveness Monitoring Team	Cache Slough Complex, Lower Sacramento River, Confluence, Suisun Bay, Suisun Marsh	Spring, summer, and fall	Phytoplankton ID, MCVI, Chl-a, Nutrients, Temperature, Turbidity, Conductivity, pH, Dissolved Oxygen	2015-present	2016-present
USGS	California Water Science Center Biogeochemistry Group	Delta wide during mapping surveys (30 sites), currently ~12 fixed stations but amount of sampling depends on funded projects.	Monthly, spring, summer, fall	Phytoplankton ID, MCVI, Chl-a, Nutrients, Temperature, Turbidity, Conductivity, pH, Dissolved Oxygen , Algal Toxins	2018-present	1971- present

Agency	Dataset	Spatial Scope	Monitoring Frequency	Parameters	Phytoplankton Time Span	Water Quality Time Span
USGS	SFB Research and Monitoring Program	San Francisco Bay, San Pablo Bay, Suisun Bay, and Lower Sacramento River	Every 2 weeks, monthly, year- round	Phytoplankton ID, Chl-a, Nutrients, Temperature, Turbidity, Conductivity, pH, Dissolved Oxygen	1992-present	1969- present
SWB/SFEI	HAB Satellite Analysis Tool	Statewide lakes and major water bodies including Cache Slough, Franks Tract and lower Sacramento and San Joaquin Rivers.	Composite 1- or 10-day pixel max.	Cyanobacterial index; Chl-a (beta)	2016-present, (Cyanobacterial index); 2023-present (Chl-a)	N/A

- 1 The series of maps below show where existing monitoring stations collect long
- 2 term data related to CHABs by the monitoring programs in Table 2. Data collected
- 3 at these locations can potentially be leveraged toward a collaborative monitoring
- 4 strategy and help in implementing other aspects of this strategy including providing
- 5 information on the status, trends, and drivers of CHABs.
- 6 The map in Figure 12 shows the extent of the HAB Satellite <u>Analysis Tool</u>, as
- 7 described in section 2.1.2 Remote Sensing. This tool estimates cyanobacterial
- 8 abundance and chlorophyll over time in large waterbodies. It does not cover
- 9 benthic blooms because measurements are based on surface reflectance. The
- 10 other maps, Figure 13-Figure 16, spatially summarize long term water quality
- 11 monitoring programs with consistent funding, as defined by their agencies. The
- 12 continuous stations (Figure 13) collect water quality data and chlorophyll
- 13 concentrations. The nutrient monitoring stations (Figure 14) represented a mix of
- 14 stations with continuous monitoring by sensors and stations where discrete grab
- 15 samples were collected and analyzed in a laboratory. The *Microcystis* index score
- 16 (Flynn et al., 2022) measurements were collected discretely (Figure 15), thus,
- 17 monitoring at these locations occurred at different frequencies and different
- 18 periods of the year including summer and fall or year-round. Routine
- 19 phytoplankton monitoring stations, which monitor for the abundance of
- 20 phytoplankton taxa, including cyanobacteria, and biovolume are obtained at each
- 21 sampling location (Figure 16). The locations of the phytoplankton stations were
- 22 obtained from USGS's Data Integration Portal Phytoplankton dashboard and
- 23 verified with each individual monitoring program. Additional maps with monitoring
- 24 data are in Appendix A.
- 25
- 26

Figure 12. Map of sites that are covered by the SWB Harmful Algae Satellite Analysis Tool hosted by the San Francisco
 Estuary Institute. The area covered by the tool is filled in black. The tool routinely acquires satellite-imagery products
 with data sourced from geospatial satellite imagery from Sentinel-3's Ocean Land and data post-processed by NOAA.

Figure 14. Map of stations that measure dissolved ammonia, dissolved nitrate/nitrite, dissolved organic nitrogen, and/or
 total Kjeldahl nitrogen. Total phosphorus and/or dissolved orthophosphate measurements are collected at the CDFW,
 DWR, DWR/USBR, and a subset of the USGS stations. See Appendix A for map showing information on phosphorus.

Figure 16. Map of phytoplankton measurement locations at which samples were collected for taxonomic analysis and
 biovolume measurement. Depth of sample collection varied by program.

1 3.2 On-going Parallel Efforts

- 2 *3.2.1 SWB's FHAB Framework and Strategy*
- 3 The <u>SWB FHAB program</u> began in 2014 and in 2019 the Governor signed AB834 to
- 4 establish a formal statewide program. In 2021, the FHAB program, in partnership
- 5 with Southern California Coastal Watershed Project, released a "Framework and
- 6 <u>Strategy for Freshwater Harmful Algal Bloom Monitoring</u>" that provided the
- 7 background for development of this strategy.
- 8 The FHAB Framework and Strategy project is referenced throughout the
- 9 recommendations in Section 5 below as goals, objectives, and recommendations
- 10 build off the information contained in that document.
- 11 *3.2.2 SWB's Bay-Delta Water Quality Control Plan updates*
- 12 The SWB is currently updating the Water Quality Control Plan for the San Francisco
- 13 Bay and Sacramento-San Joaquin Delta (Bay-Delta Plan). The <u>Staff Report</u>
- 14 acknowledges that CHABs are increasing in magnitude and frequency in the Bay-
- 15 Delta system yet are not routinely monitored. The Staff Report states the SWB's
- 16 intent to coordinate with the development of this Strategy as well as the broader
- 17 community to ensure that the highest priority monitoring for CHABs is conducted.
- 18 Additionally, the Staff Report iterates the SWB's interest in pursuing special studies
- 19 and synthesis of HABs data in the Delta to fill knowledge gaps.
- 20 *3.2.3 Delta Regional Monitoring Program*
- 21 The <u>Delta Regional Monitoring Program</u> (RMP) is conducted by entities with
- 22 discharges or project activities that will likely impact Delta water quality. The Delta
- 23 RMP intends to track and document the effectiveness of beneficial use protection
- 24 and restoration efforts through comprehensive monitoring of water quality
- 25 constituents such as those that drive CHABs (i.e., nutrients). For FY-23-24, the Delta
- 26 RMP is continuing long-term planning for nutrients and the Nutrient Technical
- 27 Advisory Committee has been directed by the RMP Steering Committee to develop
- 28 a multi-year study plan.
- **29** *3.2.4 NOAA MERHAB*
- 30 In September 2023 NOAA announced that it was awarding a grant, through its
- 31 Monitoring and Event Response Research Program (MERHAB) to support the
- 32 development of a HAB monitoring program for the San Francisco Estuary. The
- 33 project, led by scientists at the SFEI, USGS, and DWR, will leverage on-going

- 1 research and monitoring activities in the Bay and Delta to build a robust system-
- 2 wide HAB monitoring program for the San Francisco Estuary. Key collaborators
- 3 include UC Santa Cruz, Bend Genetics, the San Francisco Bay and Central Valley
- 4 Regional Water Quality Control Board, San Francisco Bay Regional Water Quality
- 5 Control Board, San Francisco Baykeeper, Cal Maritime Academy, Restore the Delta,
- 6 and NOAA-NCCOS.
- 7 Major project components include:
- Enhancing existing monitoring data sources with new technologies and tools,
 including: remote sensing, continuous water quality sensors, molecular DNA based methods, and community science monitoring
- Building an online HAB dashboard to provide managers with a decision support-tool for HAB mitigation
- Improved understanding of HAB transport dynamics through sampling of
 toxins/HAB cells using multiple methods such as water grab samples, passive
 samplers (Solid Phase Adsorption Toxin Tracking), shellfish, and molecular
 tools
- Convening a Management Transition Advisory Group (MaTAG) composed of
 managers, regulators, and NGOs to generate information necessary for
 developing a coordinated HAB strategy
- 20 The MERHAB project is referenced throughout the recommendations in Section 5

21 below, as there are numerous opportunities to leverage the Delta CHAB strategy

22 with components of the MERHAB project.

23 4 Knowledge Gaps and Collaboration Opportunities

- As a result of the Fall 2022 workshop and a review of available Delta CHAB
- 25 information (see above in Sections 2 and 3), a number of knowledge gaps both
- 26 data and collaboration related were identified. Addressing these gaps will lay the
- 27 foundation for the Delta science community to move beyond reactionary
- 28 monitoring for CHABs to having tools to effectively gather data that can inform
- 29 management and mitigation options for CHABs.

30 4.1 Data Gaps

The lack of routine CHAB monitoring data is a significant impediment to
 progress on mitigation and management for Delta CHABs.

- 2. Most monitoring to date has focused on main channels and excluded dead-1 2 end sloughs and backwaters, the areas of the Delta known for having the 3 most severe CHAB problems. Data that has been collected in these dead-end 4 areas have been disconnected from routine water quality monitoring 5 programs. Thus, it is necessary to routinely monitor these areas in 6 conjunction with interconnected Delta waterways to understand localized 7 and broad scale CHAB dynamics and to inform the development of 8 mitigation strategies.. 9 3. Although the environmental factors that drive CHABs are understood in a 10 general sense (e.g. warm temperatures, sufficient nutrients, etc.), many
- questions remain about the interaction between environmental factors,
 annual environmental variations, site specific processes, a changing climate,
 and how anthropogenic activities impact Delta CHABs.
- There is not enough information on the importance of different CHAB drivers
 on a spatial or temporal scale, or funding available to implement realistic
 mitigation approaches or to develop a predictive CHAB model.

17 4.2 Collaboration Gaps and Opportunities

- There is a collaboration gap amongst the state agencies that have legal
 responsibilities for water management and water quality.
- There is no formal mechanism for collaboration with Delta communities and
 other interested parties.
- The Delta science community would benefit from a standardized approach to
 monitoring and CHAB data analysis.
- Data should be publicly available in format that is accessible and able to be
 readily integrated.
- 26 5. Training should be made available to ensure a consistent approach to27 sample collection and reporting.

28 5 Goals and Objectives and Recommendations

- 29 The overall goal of this document is to develop a collaborative and cohesive CHAB
- 30 monitoring strategy for the Delta. Building upon the data and collaboration gaps,
- 31 five primary goals were identified, and within each goal are two to four objectives
- 32 that can help accomplish the goal (

- 1 Table 3. Goals and Objectives.). Detailed recommendations are provided to expand
- 2 on the goals and objectives.

1 Table 3. Goals and Objectives.

Goal 1: Enhance Delta CHAB collaboration	 Objective 1-1 Organize collaborative approach to implement Delta CHAB Strategy Objective 1-2 Promote coordination, collaboration, and communication among agency and community partners Objective 1-3 Identify mechanisms to ensure sustainability of long-term Delta CHAB monitoring and collaboration.
Goal 2: Identify management questions, monitoring goals, and objectives	 Objective 2-1 Identify how monitoring results will be used by decision makers Objective 2-2 Consider data and monitoring gaps needed to answer management priorities Objective 2-3 Determine how to prioritize questions and goals
Goal 3: Develop a CHAB monitoring program	 Objective 3-1 Identify specific monitoring program(s) needed to achieve the management questions and goals Objective 3-2 Identify priority monitoring parameters, locations, sampling period/frequency, and methods for the monitoring program(s) Objective 3-3 Create implementation guidance for Delta CHAB monitoring Objective 3-4 Synergize Delta CHAB monitoring with ongoing HAB efforts
Goal 4: Develop collaborative	 Objective 4-1 Validate and standardize current methods used for monitoring CHABs
reporting protocols	 Objective 4-2 Develop protocols for accurate and timely reporting
	Objective 5-1 Identify existing CHAB and HAB data repository platforms
Goal 5: Utilize a data sharing platform	 Objective 5-2 Explore how to integrate Delta CHAB monitoring data with existing data repositories
	 Objective 5-3 Develop protocols to make CHAB data accessible and available to all

- 1 This Strategy is focused on informing water quality management decisions in a 3- to
- 2 5-year horizon, consistent with the FHAB Strategy's guidance of a "near-term"
- 3 implementation. However, recommendations in this Strategy may also fall under
- 4 long-term implementation of >5 years and are included for consideration as this
- 5 Strategy is implemented. The focus of these recommendation are on water quality
- 6 management decision support, but where possible we provide the nexus to public
- 7 health.
- 8 There are multiple recommendations identified throughout different sections of
- 9 this CHAB Strategy and some are conceptual while others are technical. There are
- 10 some recommendations that have been previously implemented but have not
- 11 included a collective agreement or 'buy-in' from all Delta interested parties. The
- 12 development of the CHAB Strategy will provide the mechanism for this collective
- 13 agreement to occur.
- 14 This section provides recommendations to address the overall goals and objectives
- 15 of the Delta CHAB strategy. Table 6 summarizes the recommendations while the
- 16 sections following provide details on each recommendation. Due to the costs
- 17 associated with each recommendation, and other considerations, prioritization of
- 18 the recommendations for funding will be necessary (*Recommendation 2.4 Provide*
- 19 *approach(es) for prioritizing management questions and goals).*
- 20 Given general funding uncertainties and lack of an overall CHAB management
- 21 framework for the Delta, an adaptive management approach is necessary to ensure
- 22 implementation of this strategy is effective for all interested parties (Delta ISB
- 23 2022). Please see section 7 for details on the adaptive management approach.
- 24
- 25 5.1 Goal 1: Enhance Delta CHAB Collaboration
- Objective 1-1 Organize collaborative approach to implement Delta CHAB
 strategy
- Objective 1-2 Promote coordination, collaboration, and communication
 among partners
- Objective 1-3 Identify mechanisms to ensure sustainability of long-term
 Delta CHAB monitoring and collaboration
- 32

- 1 *Recommendation 1.1 Identify co-chairs or mechanism for someone to lead*
- 2 coordination and implementation of Delta CHAB strategy
- 3 There is no funding associated with this strategy, thus to achieve this
- 4 recommendation it is necessary to have one or more people volunteer to take this
- 5 role. Several potential approaches for helping to achieve this recommendation
- 6 include; 1) A rotation of key personnel a representative from a different agency,
- 7 two different agency representatives, etc. that rotates on a 2-3 year cycle, similar to
- 8 the CCHAB Network co-chairs; 2) this work could be folded into an existing
- 9 workgroup; or 3) an individual could be appointed as the full time lead and work
- 10 with an interagency advisory panel to help direct the work.
- 11 This final option is most feasible if funding were secured to develop a funded
- 12 position with a leadership role in representing all Delta CHAB partners and be a
- 13 collective voice for all Delta-related CHAB issues. That person could implement this
- 14 plan and develop any successor plans and policies for CHABs in the Delta and scale
- 15 to HABs generally in the watershed and San Francisco Estuary. This position could
- 16 potentially be developed by an agency or agencies or filled by a consultant.
- 17 Recommendation 1.2 Form advisory committee to develop final goals, questions,
- 18 *and monitoring strategy.*
- 19 This recommendation is in place to develop the advisory committee to work closely
- 20 with the lead(s) described in *Recommendation 1.1 Identify co-chairs or mechanism*
- 21 *for someone to lead coordination and implementation of Delta CHAB strategy*. To
- 22 ensure that this group is effective and able to effectively work together to develop
- 23 final management goals and questions it is recommended that approximately 8 to
- 24 10 representatives serve on this group. One of the major roles of the advisory
- committee will be to work together to develop and finalize the management goals
- and questions (see Goal 2 and Recommendations below). In addition to developing
- and finalizing the management goals and questions the advisory committee should
- also plan to develop a prioritization structure to address the recommendations
- 29 within this document (*Recommendation 2.4 Provide approach(es) for prioritizing*
- 30 *management questions and goals*).
- 31 The first step in developing the advisory committee is to identify key personnel
- 32 from government, citizenry, and stakeholder groups. This key group of key
- 33 personnel should be willing and able to allocate sufficient time to work on
- 34 developing the management goals and questions and to develop the monitoring
- 35 strategy. The advisory committee should seek input from managers to ensure the

- 1 strategy is able to address management needs. This can either be achieved by
- 2 including managers on the advisory committee, or having manager representatives
- 3 that have technical expertise participate. For the key personnel representatives
- 4 may include those listed above in Section 1.4 Multi-Organization Coordinated
- 5 Monitoring.
- 6 Although it will be critical to have the voices of many people heard in the advisory
- 7 committee, *Recommendation 1.4 Strengthen and expand partner relationships*
- 8 below focuses on how to include a wider group of people in the ongoing CHAB
- 9 related work.
- 10 The advisory committee will coordinate with the MERHAB MaTAG to build
- 11 consistency between efforts.
- 12 *Recommendation 1.3 Identify existing barriers to collaboration/cooperation and*
- 13 *identify methods for overcoming them*
- 14 It is well recognized that there are many interested parties on the topic of CHABs in
- 15 the Delta. This recommendation seeks to ensure that groups with a vested interest
- 16 are allowed access to discussions on implementation of all components of this
- 17 strategy. Special attention should be given to including those historically
- 18 disenfranchised by government work such as Tribal nations and disadvantaged
- 19 communities. The groups identified above in Section 1.4 Multi-Organization
- 20 Coordinated Monitoring are those that have been identified as having significant
- 21 interest in this work and can serve as a starting point for including the right
- 22 individuals for this effort.
- 23 Goals of each represented group should be defined and opportunities to synergize
- 24 efforts should be identified to promote the most mutually beneficial monitoring
- 25 goals. Where goals are so dissimilar or valuable data collection or perspectives
- 26 cannot be brought into this work, representatives for these groups should be
- 27 brought together to discuss how to best work together and what could make
- 28 partnerships more tenable. Depending on the severity of differences held, third
- 29 party negotiation might be the most feasible to advance these conversations.
- 30 Methods recommended for identifying interested parties include:
- Workshop focused on identifying ways to develop partnerships specific to
- 32 CHABs in the Delta. (*Recommendation 1.5 Hold an annual meeting focused*
- 33 specifically on Delta CHABs)

- Maintaining all materials associated with implementation of the CHAB
 monitoring strategy in an accessible and public location. (*Recommendation 5.1 Develop a comprehensive list of all currently used data repository platforms, data resources, and other Delta CHAB related resources* and
 Recommendation 5.2 Coordinate with the NOAA MERHAB data dashboard)
- Upholding the <u>FAIR principles</u> for all data created as a result of
 implementation of this strategy. (*Recommendation 5.4 Incorporate open data principle*)
- 9 *Recommendation 1.4 Strengthen and expand partner relationships*
- 10 A number of relationships have been developed in the Delta CHAB community over
- 11 the past decade. However, there continues to be a need to strengthen those
- 12 existing relationships to ensure that everyone has a voice in how CHAB are
- 13 monitored in the Delta. Existing relationships can be strengthened by reviewing
- 14 current approaches and making adjustments based on community input.
- 15 There is also the need to expand the partner base by engaging with new members
- 16 who have an interest in water quality issues. This expansion can include people
- 17 directly/indirectly involved in monitoring, or other interested community members.
- 18 These groups will be involved by receiving updates from the key personnel group
- and the co-chair of the overall strategy. These partners will also be invited to the
- 20 annual meeting (*Recommendation 1.5 Hold an annual meeting focused specifically*
- 21 *on Delta CHABs*) and asked for continued input as this strategy continues to be
- 22 developed and refined.
- 23 A listserv could be developed for all Delta CHAB partners to ensure information
- related to this strategy, and Delta CHABs in general, reaches all interested parties.
- 25 *Recommendation 1.5 Hold an annual meeting focused specifically on Delta CHABs*
- 26 As recommendations are implemented and lessons learned, consistent meeting of
- 27 people engaged in Delta CHAB monitoring is necessary. This allows a cohesive
- 28 approach to CHAB monitoring and community-based course correction to support
- 29 adaptive management.
- 30 An annual meeting is an important event that can be used to keep the community
- 31 informed about ongoing efforts related to CHABs. An annual meeting will require
- 32 someone to lead the meeting each year. It will also likely require a funding source
- 33 to pay for an event space. There are several approaches that can be used to
- 34 identify a lead. First, a single agency could volunteer to lead the meeting each year.

- 1 Second, the co-chairs in *Recommendation 1.1 Identify co-chairs or mechanism for*
- 2 someone to lead coordination and implementation of Delta CHAB strategy could
- 3 ask for volunteers to lead the meeting. With either option it would be helpful to
- 4 follow the approach taken to lead the Interagency Ecological Program (IEP) Annual
- 5 Workshop. For the IEP Annual Workshop the leads rotate on a two year basis –
- 6 having a 2nd person sit in to learn from the lead then leading the meeting the
- 7 following year.
- 8 The first meeting can be used to orient people to the goals, objectives, and
- 9 recommendations of this strategy (*Recommendation 2.5 Publish and share final*
- 10 *management questions and goals with all interested parties*) and to hold the first
- 11 training (*Recommendation 4.4 Develop training and intercalibration plan*).
- 12 Subsequent meetings can also include trainings, provide a mechanism to
- 13 implement the adaptive management strategy (see Section 6), and provide updates
- 14 on monitoring and special studies (*Recommendation 4.5 Report on CHAB*
- 15 *monitoring and special study findings*).
- *Recommendation 1.6 Identify funding to support implementation of the CHAB Monitoring Strategy*
- 18 To ensure sustainability of Delta CHAB monitoring it will be necessary to secure
- 19 funding, continue collaboration, and share data in a collaborative manner. Full
- 20 implementation of this strategy will require funding from multiple sources. In
- 21 addition to acquiring new funding, the funding may include in-kind contributions
- 22 (e.g., staff time or direct funding), cost-sharing, regulatory actions, and/or grants.
- 23 There has been interest expressed from various agencies that certain components
- 24 of this strategy are priorities for them to fund. The advisory committee
- 25 (*Recommendation 1.2 Form advisory committee to develop final goals, questions,*
- 26 *and monitoring strategy*) can be used as vehicle to have funding related discussions
- and to identify different components of this strategy that can be implemented by
- 28 various partners.
- 29 New legislative efforts may also be needed to address CHAB monitoring. For
- 30 example, at the federal level, the Clean Water Act (CWA) establishes the basic
- 31 structure for regulating discharges of pollutants into the waters of the United States
- 32 and regulating quality standards for surface waters. In 2014, the Harmful Algal
- 33 Bloom and Hypoxia Research and Control Amendments Act was signed into law.
- 34 Under the CWA the SWB and Regional Water Boards (collectively, Water Boards)
- 35 have regulatory responsibility for protecting the water quality and thus regulatory

pathways that require and fund robust and regular monitoring. These pathways 1 2 may include adding CHAB monitoring or payment for CHAB monitoring into existing 3 permits. It is also possible that CHABs could be included in the SWB Water Right 4 Decisions and Central Valley Regional Water Board's Basin Plan. 5 The California Legislature passed a bill that mandated the creation of the 6 Freshwater and Estuarine Harmful Algal Bloom Program in 2019. Building off of this 7 the California Legislature could allocate some funds annually to pay for some of the 8 monitoring necessary to address CHAB issues in the state including in the Delta. 9 5.2 Goal 2: Identify management questions, monitoring goals, and objectives Objective 2-1 Identify how monitoring results will be used by 10 11 decision makers 12 Objective 2-2 Consider data and monitoring gaps needed to answer 13 management priorities • Objective 2-3 Determine how to prioritize management questions 14 15 and goals 16 17 Recommendation 2.1 Consider the amount and type of monitoring information 18 needed by managers to support decision making 19 Identifying management questions is necessary to inform the monitoring goals and 20 objectives and to ensure that the monitoring plans are fit for their purpose (Howard 21 et al., 2022). The amount and type of information needed to support decision 22 making should be considered when developing management questions and goals.

- 23 Since needs and interests will differ based on the specific needs and interests of
- each partner there will be a number of questions and goals. This will require a wide
- 25 variety of monitoring information to be collected.
- 26 Below are some example management questions that highlight the nexus between
- 27 the management questions and potential decisions that may be made based on
- 28 each question. This set of example management questions can provide a working
- 29 framework for the advisory committee (*Recommendation 1.2 Form advisory*
- 30 *committee to develop final goals, questions, and monitoring strategy*) to use when
- 31 finalizing the management questions for this strategy. Importantly, even after the
- 32 management questions are finalized the adaptive management process should be

- 1 used to continue to evaluate and refine these questions as more data is collected
- 2 and collaboration is enhanced (Section 6).

Table 4. Example management questions and linkages to decision making

Category	Management question (large/regional spatial scale)	Example of decisions that are supported by the monitoring	Management question (small/localized monitoring scale)	Examples of decisions that are support by the monitoring
Status	What is the overall magnitude and spatial extent of CHABs within the Delta region?	 Prioritize waterbodies or hydrologically distinct areas; 305(b) report; Briefings for legislature and state agencies; Inform status and trends report to the public 	Are CHABs degrading water quality in this area of the Delta and what is the timing of when CHABs occur?	 303(d) listing; total maximum daily load (TMDL) compliance; Catchment conservation/ protection; Public health advisory posting; Inform changes to compliance monitoring
Trends	How are the magnitude, extent, and frequency changing over time?	 Prioritize waterbodies or hydrologically distinct areas; 305(b) report; 	Are CHABs in this area of the Delta getting better or worse over time?	 303(d) listing; total maximum daily load (TMDL) compliance; Catchment conservation/ protection;

		 Briefings for legislature and state agencies; Inform status and trends report to the public 		 Public health advisory posting; Inform changes to compliance monitoring
Environmental Driver (Natural and Human causes)	What are the relative influences of flow and water residence time, nutrients, temperature, and other environmental factors in driving CHABs in hot spots and other areas of the Delta?	 Biostimulatory objectives and implementation policy Environmental flow policy State/regional nonpoint source control strategies Irrigated lands program/Ag waiver requirements NPDES permit requirements 	What are the environmental drivers and controllable factors of CHABs in this area of the Delta?	 TMDL development and implementation through municipal stormwater (MS4), NPDES, and industrial permits; Irrigated Lands Program/Ag Waiver Requirements, etc.; Modification of water operations

CHAB Prediction	Which hydrologically distinct areas of the Delta are at risk of experiencing CHABs?	 Prioritization of funding for monitoring; Inform development of management actions 	What are the time periods that this area of the Delta most likely has a CHAB problem?	•	Timing to go out to sample a waterbody for a bloom; Prioritization of management actions, including monitoring requirement; Modification of water operations
Mitigation and Prevention	What are the most effective mitigation and prevention measures for CHABs in the Delta over short- and long-term periods?	 Briefings for Legislature and SWB; Status and trends report to public on MyWaterQuality portal; 	How effective are management actions in mitigating the CHAB problem in this area of the Delta?	•	Adaptive management of watershed or waterbody-specific restoration actions (best management actions, floodplain restoration, water
	What are short- and long-term management measures of HABs that would be applicable and effective in the Delta	 Inform funding mechanisms and prioritize funding; Development and testing of CHAB mitigation measures 			column mixing)

	to restore and maintain beneficial uses, and what steps would need to be taken prior to implementation?			
Management Activities	In what ways do different water management actions during drought affect the risk of CHABs?	 Prioritization of funding for restoration; Prioritization of funding for monitoring of management actions Inform water management actions Inform Drought Contingency Plans 	How do drought management actions affect CHABs in localized areas?	 Document, and to the extent possible, mitigate the impact of drought barrier(s), temporary barriers, operable gates, flow actions on CHABs
Environmental Impacts	What are the ecological impacts of CHAB's?	 Informing mechanisms to obtain funding; 	Are the ecological impacts of CHABs most severe in hot spot locations?	 Prioritization of funding for monitoring of management actions

What species are	Prioritization of	
highest at risk to	funding for	
CHAB's?	monitoring;	

- Recommendation 2.2 Consider regional, state, and national CHAB documents,
 strategies, and guidance when developing management goals and questions
- 3 There are a number of documents that address potential CHAB management goals
- 4 and questions. These documents were considered in the development of the
- 5 example management questions in *Recommendation 2.1 Consider the amount and*
- 6 *type of monitoring information needed by managers to support decision making*. At
- 7 a minimum the following documents should continue to be considered when
- 8 finalizing the management goals and questions.
- 9 SWBs' Framework and Strategy for Freshwater Harmful Algal Bloom
 10 Monitoring
- 11 CCHAB Network's guidance to respond to CHABs
- SWAMP's California Freshwater Harmful Algal Bloom Field Guide and
 standard operating procedures (SOPs)
- Delta Regional Monitoring Program Nutrient Research Plan
- Interstate Technology Regulatory Council (ITRC) Strategies for Preventing and
 Managing Harmful Cyanobacterial Blooms
- ITRC Strategies for Preventing and Managing Benthic Harmful Cyanobacterial
 Blooms
- Delta Conservancy Compendium of Resources, Protocols, and Guidelines for
 Environmental Monitoring
- IEP Phytoplankton and water quality work group
- IEP Phytoplankton enumeration synthesis project
- Existing efforts have been captured in this document and will be included
 throughout implementation of this strategy.
- 25
- 26 *Recommendation 2.3 When possible, coordinate Delta CHAB questions and goals*27 *with ongoing local and state efforts*
- 28 Building off *Recommendation 2.2 Consider regional, state, and national CHAB*
- 29 *documents, strategies, and guidance when developing management goals and*
- 30 *questions*, it will be important to coordinate questions and goals with ongoing local
- 31 and state efforts (e.g., see Section 0). There may be opportunities to leverage
- 32 ongoing monitoring efforts and management questions and goals may build off

- 1 ongoing work. Coordination with local and state efforts will also be useful for
- 2 sharing ideas and information.
- *Recommendation 2.4 Provide approach(es) for prioritizing management questions and goals*
- 5 A number of different management questions and goals are necessary to inform
- 6 collaborative management and mitigation decisions. The advisory committee
- 7 should identify a process for prioritizing the management questions and goals. This
- 8 will allow different perspectives to be considered when choosing the prioritization
- 9 structure. The prioritization structure and approach should also be discussed at the
- 10 annual meeting (*Recommendation 1.5 Hold an annual meeting focused specifically*
- 11 *on Delta CHABs*) to ensure open communication on the topic.
- 12 There are several approaches that could be considered by the advisory committee
- 13 when developing the prioritization structure. One approach is to identify the
- 14 monitoring needs that can be leveraged with existing monitoring programs or
- 15 special studies that are currently in place (e.g., see Section 0). Another approach is
- 16 to identify potential constraints such as inadequate resources, funding, time, or
- 17 other factors that may impact the ability to meet a specific management question
- 18 or goal. It may also be useful to designate certain questions/goals to agencies who
- 19 are willing to provide resources to ensure sufficient monitoring is available to
- 20 achieve the questions/goals.
- 21 This strategy was developed to inform water quality management decisions in a 3-
- 22 5-year horizon, consistent with the FHAB Strategy's guidance of a "near-term"
- 23 implementation. However, recommendations in this Strategy may also fall under
- 24 long-term implementation of >5 years and are included for consideration as this
- 25 Strategy is implemented. The advisory committee could choose to prioritize near-
- 26 term recommendations as part of the prioritization structure.
- 27 *Recommendation 2.5 Publish and share final management questions and goals*
- 28 *with all interested parties*
- 29 Once the management questions and goals have been finalized it will be important
- 30 to share this information with all potential interested parties. The management
- 31 questions and goals could be shared via the CCHAB Network webpage, through an
- 32 email listserv (see *Recommendation 1.4 Strengthen and expand partner*
- 33 *relationships*), or other means.
1 It will also be important to share the management questions and goals at the

2 annual meetings (*Recommendation 1.5 Hold an annual meeting focused specifically*

- 3 *on Delta CHABs*). The adaptive management process is an important part of this
- 4 monitoring strategy. As additional information is learned about Delta CHABs and
- 5 the science on the topic evolves it is likely that the management goals and
- 6 objectives will be adjusted to adapt to this additional information. Thus, it will be
- 7 important to keep the published version of the management questions and goals
- 8 up to date.
- 9 5.3 Goal 3: Develop a Delta CHAB Monitoring Program
- Objective 3-1 Identify specific monitoring program(s) needed to achieve
 the management questions and goals
- Objective 3-2 Identify priority monitoring parameters, locations,
 sampling period/frequency, and methods for the monitoring
 program(s)
- Objective 3-3 Create implementation guidance for Delta CHAB
 monitoring
- Objective 3-4 Synergize Delta CHAB monitoring with ongoing HAB
 efforts

19 *Recommendation 3.1 Based on the goals and objectives developed in Goal 2*

- 20 *identify monitoring programs and special studies needed to achieve outcomes*
- 21 A combination of a routine monitoring program(s) and special studies will be
- 22 needed to achieve management goals. Routine CHAB monitoring is necessary to
- 23 provide information on current conditions and data to understand status and
- 24 trends. Design characteristics that should be considered in the development of the
- 25 routine monitoring program(s) are described below in *Recommendation 3.2.*
- 26 *Develop monitoring program(s) design characteristics.*
- 27 Despite the need for routine monitoring of CHABs in the Delta, it is recognized that
- 28 some questions would be better addressed through special studies. These special
- 29 studies can be focused on addressing technical questions related to the factors that
- 30 cause CHABs, evaluate different monitoring techniques, evaluate feasible mitigation
- 31 options, and address specific management actions. Collectively, special studies can
- 32 advance the development of routine monitoring program(s) components and be
- 33 used in the adaptive management process. A list of potential special studies is

- 1 provided below in *Recommendation 3.5 Implement special studies to address data*
- 2 gaps and technical questions.
- 3 *Recommendation 3.2. Develop monitoring program(s) design characteristics*
- 4 A monitoring program or programs will need to be designed with the purpose of
- 5 satisfying the management questions and goals. The monitoring program(s) should
- 6 also have enough flexibility to adapt to unforeseen circumstances and take
- 7 advantage of novel techniques and technologies (Delta Independent Science Board
- 8 (ISB) 2022). During the design phase it will be critical to consider how the data that
- 9 will be collected can be used to address the management questions, goals, and
- 10 management decisions identified in Goal 2.
- 11 The ITRC Strategies for Preventing and Managing Harmful Cyanobacterial Blooms
- 12 (HCB-1) and State FHAB Strategy have identified considerations for developing a
- 13 CHAB monitoring program and are a good resource to use during the design of
- 14 Delta CHAB monitoring program(s). These considerations are incorporated into the
- 15 following Recommendations to provide Delta-relevant guidance for the monitoring16 program(s).
- 17 Decisions on the locations, frequency of samples, and specific sample types should
- 18 be based on monitoring goals and objectives since different combinations may be
- 19 used (Howard et al., 2022). While designing the monitoring program(s) it will be
- 20 important to consider the funding, time, and personnel available to complete the
- 21 monitoring and to leverage these resources with other projects when possible.
- 22 Sustainability of the monitoring program(s) is important, thus design strategies
- 23 should be incorporated to increase the likelihood of maintaining the monitoring
- 24 program(s) over the long-term.
- 25 The following sections identify specific characteristics that should be incorporated
- 26 into the monitoring design.
- 27 Recommendation 3.2.1 Identify geographic areas for monitoring
- 28 Based on the management questions and goals, different geographic areas
- 29 may be prioritized for monitoring. For example, as identified in Data Gap
- 30 4.1.1.-2 the majority of CHAB sampling to date has occurred in the main
- channels. As such, static peripheral areas that often experience the most
 severe CHABs have been chronically understudied. This data gap is
- 33 addressed in the management question "What are the relative influences of
- flow and water residence time, nutrients, temperature, and other

- environmental factors in driving CHABs in hot spots and other areas of the
 Delta?" To address this management question, it would be important to
 include areas that have historically been under sampled but have annual
 CHABs.
- Other criteria may include identifying areas with annual blooms, areas that
 are most utilized by disadvantaged communities, areas that are most
 commonly used by special status species, areas that are already part of other
 routine water quality monitoring, etc.
- 9 *Recommendation 3.2.2 Identify spatial coverage, temporal coverage, and*10 *monitoring frequency*
- Monitoring during and in response to a CHAB event is a reactive approach
 that can make it difficult to understand the conditions that caused the bloom
 to form. Thus, monitoring criteria should consider sampling before, during,
 and after a bloom event which in the Delta may require sampling throughout
 much of the calendar year (ITRC 2024).
- The time of sampling should also be considered as cyanobacteria are
 strongly responsive to sunlight. To understand status and trends of CHABs it
 is useful to complete sampling during the same time period of a day.
- When considering spatial coverage it is important to recognize that
 cyanobacteria blooms are often patchy and not uniformly distributed. CHABs
 are often most dense along the shoreline relative to the open water. Thus,
 multiple grab samples or a composite sample should be considered in the
 spatial design. The spatial component of the monitoring design should also
 consider where in the water column to collect samples and if it is worthwhile
 to collect integrated samples.
- Some other questions to address spatial coverage, temporal coverage, and
 monitoring frequency include:
 - How many sampling points are needed to answer each question?

28

- Follow CCHAB Network guidance that recommends monitoring events
 occur a minimum of two times per month at select stations?
- Should temperature threshold (e.g. 19°C) should be used to increase
 sampling events?

- How do other environmental factors (e.g. water year type) influence 1 2 sampling needs? 3 How do tidal cycles impact sampling and how this could influence 4 sample comparisons? 5 How do various management actions impact the spatial design? ٠ 6 Recommendation 3.2.3 Identify the metrics/parameters that should be 7 collected for the monitoring program(s) 8 There are a wide range of metrics that can be included in a monitoring 9 program. These include collecting discrete water quality samples for nutrient, 10 chlorophyll, genetic, and/or toxin analysis, to time integrated samples such 11 as solid phase adsorption toxin tracking bags (SPATT), to remote sensing, etc. 12 Depending on the management question, collection of a different set of 13 metrics may be needed to help answer the question. Regardless of the 14 metrics that are utilized it will be important for there to be consistency 15 between laboratory and analysis methods (e.g., ELISA vs LC-MS to measure 16 toxins, phytoplankton enumeration, etc.). 17 Modern technologies also continue to evolve and there will likely be 18 opportunities for machine learning/artificial intelligence methods to be 19 integrated with more conventional sampling metrics to monitor 20 cyanobacteria (e.g., Saleem et al. 2023). Although many of these newer 21 technologies have limitations in their current state of development it is likely 22 that there will be increasing opportunities to incorporate these technologies 23 over the next few years. As such, the adaptive management process should 24 be used to incorporate technologies into monitoring programs when it is 25 appropriate.
- 26 *Recommendation 3.2.4 Identify how data will be used*
- Design characteristics should include plans for how the data would be used,
 adequate data management (*Recommendation 5.2 Coordinate with the NOAA MERHAB data dashboard*), quality control (*Recommendation 4.3*
- 30 Develop a programmatic Quality Assurance Program Plan (QAPrP) for Delta
- 31 *CHABs, Recommendation 4.4 Develop training and intercalibration plan*), and 32 data analysis and synthesis (*Recommendation 4.1 Compare, review, and*
- data analysis and synthesis (*Recommendation 4.1 Compare, review, and standardize sampling and laboratory methods, Recommendation 4.2 Ensure*
- 34 *CHAB related SOPs are easily accessible*). Data collected in the monitoring

- 1 program(s) should be readily available to the public (*Recommendation 5.2*
- 2 *Coordinate with the NOAA MERHAB data dashboard, Recommendation 5.4*
- 3 *Incorporate open data principle*) (Delta ISB 2022).
- 4 Recommendation 3.3 Based on recommendations described above, design
- 5 *monitoring program(s)*
- 6 Develop a document(s) that provides a design for the monitoring program(s). This
- 7 document(s) should include the design characteristics outlined in *Recommendation*
- 8 *3.2. Develop monitoring program(s) design characteristics*. It should also describe
- 9 the resources that will be used to collect and analyze the samples. If there are
- 10 multiple monitoring documents to address the different management questions
- 11 and goals it will be important that documents are coordinated so that data can be
- 12 compared across monitoring efforts if necessary.

Management Question	Geographic	Spatial, temporal, frequency	Metrics	Data	Additional Considerations
Which hydrologically distinct areas of the Delta are at risk of experiencing CHABs?	 Identify locations known for having CHABs Identify locations that may be prone to CHABs based on hydrologic characteristics Identify high use areas that may be prone to CHABs 	 Identify sampling frequency to capture bloom development Consider the number of samples needed to represent distinct areas 	 Select relevant driver data for chosen site Are genetic and toxin data needed? how can remote sensing be used to monitor CHABs in these areas? 	 Do methods and SOPs meet data management and quality control measures to be used for management decisions? 	 e.g., Does public access or other use require modifications to the design? How much data is needed to inform management decisions? How can this work be leveraged with ongoing routine water quality monitoring?

Table 5. Example of management questions and associated design considerations and plan for use of monitoring data

- 1 *Recommendation 3.4 Consider resources that are currently available or that may*
- 2 *be available in the future*
- 3 As described above in Section 0 there are a number of routine water quality
- 4 monitoring programs in the Delta; however, none of these are CHAB focused.
- 5 Adding focused CHAB monitoring to these existing programs may be a good option
- 6 for leveraging resources to address CHAB management questions and goals.
- 7 However, additional resources will be necessary to answer all the management
- 8 questions and goals since many of the established water quality monitoring
- 9 programs do not sample in the areas that experience the most severe CHAB.
- 10 The availability of various resources may impact the ability to implement certain
- 11 recommendations in this document.

12 *Recommendation 3.5 Implement special studies to address data gaps and technical*

- 13 *questions*
- 14 The following special studies represent some potential ideas to advance this
- 15 recommendation but should not be treated as an exclusive list. The special studies
- 16 listed below can be used by those who have the ability to pursue CHAB related
- 17 research from independent funding sources as well as providing guidance for
- 18 agencies and work groups that have funding to pursue special studies.
- 19 Management questions and goals identified in Goal 2, *Recommendation 2.4*
- 20 *Provide approach(es) for prioritizing management questions and goals* above can
- 21 be used to prioritize special studies. However, in cases where independent
- 22 researchers have funding to pursue special study projects studies may not follow
- 23 the same priorities identified through this strategy. In this case, the plan for
- 24 implementing special studies will be based on the researchers or partners that
- 25 provide funding for the special study. *Recommendation 5.3 Develop and maintain*
- 26 *list of all routine and special studies* is in place to encourage collaboration among
- 27 those working on special studies.
- 28 The design of each special study will be specific to the type of study that is
- 29 implemented and the resources available to complete each study.
- 30 Environmental Processes, CHAB development, CHAB decline
- 31 Special Study 3.5.1 Investigate role of different nutrient sources on CHAB
 32 bloom formation throughout the Delta

Nutrients have been identified as non-limiting for cyanobacteria growth throughout the Delta. However, there are numerous questions remaining about how nutrient manipulations may impact CHABs in various areas of the Delta. Some examples include:
• What is the site-specific role of external vs internal nutrient loading?
• What is the relationship between macrophytes, cyanobacteria, and nutrients?
• Do nutrient limitations that prevent cyanobacteria dominance in the literature apply to the Delta?
 If nutrients are reduced to limiting amounts would nitrogen fixing cyanobacteria become problematic?
<i>Special Study 3.5.2 Investigate how changing atmospheric carbon levels may impact CHABs in the Delta</i>
Rising atmospheric CO ₂ concentrations associated with climate change are anticipated to stimulate cyanobacteria blooms, shift the genetic composition of cyanobacteria blooms, and potentially change growth responses of different phytoplankton species (Visser et al. 2016). Field- and laboratory- based studies should be developed to assess how rising CO ₂ will impact CHABs in the Delta. This information will be an important component of a predictive model as well as helping managers understand how to plan for potential changes to CHAB ecology in the Delta.
<i>Special Study 3.5.3 Investigate how localized flow conditions, site specific residence times, and tidal velocity influence CHAB formation</i>
It is well accepted in the scientific community that flow, velocity, and residence time play an important role in the ability of cyanobacteria to grow, aggregate, and form blooms. There are some studies that suggest flow thresholds for disrupting CHABs in the literature (e.g., Mitrovic et al. 2011), but there is little to no work on this topic in the Delta. Similarly, studies have shown that long residence times increase the potential for CHABs, but it remains unknown how long residence time in number of hours or days is sufficient for CHABs to form. Studies should be developed to address impacts of flow, residence time, and tidal velocity on CHABs in different areas of the Delta (e.g., static peripheral areas, canals, edge water habitats, main

- channels, etc.) and how these factors relate to other environmental
 conditions that are conducive to CHABs.
- 3 Special Study 3.5.4 Investigate role of cyanobacteria seed stock in Delta
 4 CHABs

5 Growing evidence suggests that overwintering cyanobacteria inoculates 6 summertime cyanobacteria blooms. Determining the role of seed stock in 7 bloom formation will be important to identify potential areas to implement 8 targeted mitigation practices.

- 9 Special Study 3.5.5 Study factors that cause bloom decline/collapse (viruses,
 10 decreasing light, nutrient depletion, salinity changes, etc.) and whether those
 11 factors can be manipulated
- Little is known about what causes cyanobacteria blooms to decline or
 collapse in the Delta. Field- and laboratory-based studies could be
 implemented to understand the various factors that result in cyanobacteria
 cell lysis and collapse.
- 16 *Monitoring Methods*
- Special Study 3.5.6 Coordinate with SWB to collect field data and other
 information needed to support remote sensing recommendations in the
 State FHAB Strategy (Smith et al. 2021).
- There are many studies that could be developed to address this specific recommendation. Coordination with the State Water Board can be used to prioritize remote sensing needs. One idea is to explore the feasibility of generating drone imagery of hotspot locations as an early warning indicator, to track seasonal variation, and to better understand how CHABs are transported from peripheral areas into the main Delta. A second idea is to compare in-situ chlorophyll data with remotely sensed chlorophyll-a data.
- 27 Special Study 3.5.6 Improve use of visual index data
- The visual index data is one of the largest and longest-term data sets of *Microcystis* available in the Delta. Visual index data may not be used to make regulatory decisions, but it is easy and inexpensive to collect the data and can be used to supplement routine monitoring and special studies. Currently, the visual index data is subjective based on the observer collecting the data and it remains unknown how well correlated it is with actual *Microcystis*

presence. Several ideas for studies to improve use of visual index data are
 described below.

- 3 First, collection of visual index should be standardized. To achieve this 4 there should be annual visual index training or workshop in the spring 5 prior to the start of the CHAB season (see *Recommendation 1.5 Hold* 6 an annual meeting focused specifically on Delta CHABs and 7 *Recommendation 4.4 Develop training and intercalibration plan*). As 8 part of this training there should be an explanation of what the visual 9 index is supposed to represent. A standard operating procedure could 10 be developed and shared at each training to ensure that people from different agencies and other groups are collecting the data in the same 11 12 way.
- Second, measurements should be taken to compare *Microcystis* visual index data with cell abundances and chlorophyll concentrations, which could include comparing it to remote sensing data. This information can be used as a line of evidence in understanding the temporal and spatial extent of cyanobacteria. This data will be especially helpful if no other data is collected in certain areas of the Delta.
- Third, develop a revised visual index score procedure that
 incorporates visual indicators common to non-*Microcystis* species,
 step-by-step instructional document. This procedure should be
 incorporated into the visual index training once it has been developed.
- 23 Special Study 3.5.7 Evaluate the effectiveness of chlorophyll sensors to detect
 24 cyanobacteria

25 In-situ optical and fluorometric measurements have the potential to fill the 26 gap that exists from relying only on laboratory-based extractions. However, it 27 remains unknown how effective various chlorophyll sensors are at 28 measuring chlorophyll from buoyant cyanobacteria. Studies should explore 29 the relationship between chlorophyll fluorescence measurements and 30 laboratory extracted chlorophyll. There is also evidence that different brands 31 of sensors provide varying chlorophyll readings so it could be useful to 32 continue exploring the differences between sensors. Eventually, it would also 33 be useful to relate in-situ measurements to cyanobacterial cell density.

Special Study 3.5.8 Determine how well mixed Microcystis is throughout the 1 2 water column and its contribution to total community chlorophyll-a 3 Different sampling groups collect phytoplankton samples at varying depths 4 in the water column (typically at the surface or one meter below the surface). 5 It would be useful to measure distribution of *Microcystis* vertically (at 6 multiple depths in the water column) and correlate this with chlorophyll-a 7 profiles. 8 Special Study 3.5.9 Determine if benthic cyanobacteria occur in the Delta and 9 if so, contribute toxins to the water column. 10 Little work has been conducted to determine if benthic cyanobacteria are an 11 issue in the Delta. A first step would be to investigate areas that have 12 habitats conducive to the formation of benthic cyanobacteria. 13 Special Study 3.5.10 Determine concentrations at which cyanobacteria 14 become a management concern 15 A CHAB "event" is largely determined by regulatory agencies concerned with 16 food and human safety. These CHAB events are at times based on visual 17 appearance of a waterbody and there is often not toxicity data associated 18 with observed blooms. Studies could investigate the relationship between 19 water column toxicity and cyanobacteria cell abundance to determine if 20 there is any relationship in the Delta. This could be investigated for different 21 species of cyanobacteria and at different times of the year when toxin 22 producing strains may or may not be present. 23 Special Study 3.5.11 Explore use of artificial intelligence and machine 24 learning for monitoring Delta CHABs 25 Artificial intelligence and machine-learning algorithms can be applied to 26 cyanobacteria monitoring through cell imaging and predicting changes in 27 water quality. For example, CHABs monitoring data, such as chlorophyll-a or 28 phycocyanin, together with environmental data such as flow, temperature, 29 and nutrients, can be used to train machine learning algorithms to hindcast 30 and predict when cyanobacteria blooms may form. Special studies could 31 work on integrating multiple algorithms and available datasets to apply 32 machine learning models to the Delta. Information that comes out of these 33 studies may inform the types of monitoring data that are needed to validate such technologies. 34

1 Special Study 3.5.12 Explore mechanistic approach to predict CHAB events

A mechanistic approach, specifically coupled hydrodynamic and 2 3 biogeochemical models, can potentially be effective in modeling CHABs. 4 Unlike the data-driven nature of machine learning methods, these predictive 5 models establish causal connections between phytoplankton biomass and 6 environmental drivers. While observational data aids in parameter tuning 7 and model calibration, the mechanistic approach inherently requires less 8 data and imposes fewer stringent requirements on data structures 9 compared to machine learning techniques. These two approaches also 10 complement each other; while the mechanistic method enriches machine 11 learning by proving a more comprehensive training dataset, insights from 12 machine learning can enhance the robustness of mechanistic linkages. 13 Notably, mechanistic models have already been successfully employed to 14 model non-HABs-related blooms in the Delta.

15 *CHAB Toxicity*

Special Study 3.5.13 Develop methods to identify and detect novel or
 emerging cyanotoxins

Current laboratory methods are focused on detecting the most common
 cyanotoxins (i.e., microcystin, anatoxin-a, cylindrospermopsin, and saxitoxin).
 Indeed, the majority of research has focused on microcystins, specifically the
 microcystin congener microcystin LR. Yet, new toxins and their congeners
 continue to be discovered and may have adverse impacts on the
 environment. Investigations of cyanobacteria peptides and other compounds
 will be useful for understanding the true impacts of CHABs across the Delta.

25 Special Study 3.5.14 Compare analytical methods for toxin detection in 26 complex matrices

27 There is evidence in the literature that cyanotoxin detection may differ 28 between ELISA and LC-MS methods, especially in complex matrices such as 29 sediments and biota. There are a limited set of analytical standards available 30 for LC-MS analysis and matrix interference with both methods. Since 31 microcystin is the most common cyanotoxin observed in the Delta, and a 32 stable toxin that is commonly observed in matrices other than water, it 33 would be useful to conduct special laboratory studies on this toxin. Studies 34 can focus on the comparison of ELISA and LC-MS to study microcystin

- concentrations in sediments and biota to work on developing standard
 methods that can be adopted by laboratories.
- 3 Special Study 3.5.15 How do changes in cell physiology (e.g., manipulated by
 4 nutrient limitation vs. sufficiency) impact toxin formation?
- 5 There is growing evidence in the literature that nitrogen and micronutrients 6 disproportionally influence the toxicity of CHABs dominated by *Microcystis* 7 (e.g. Wagner et al. 2019, Wagner et al. 2021). However, many questions 8 remain about how nutrient availability affects toxin production and potential 9 for presence of different microcystin congeners. Gradients of nitrogen and 10 salinity have also been shown to have physiological costs and benefits in 11 toxin-producing cyanobacteria. Investigations could further study how the 12 combinations of high and low salinity with high and low nitrogen 13 concentrations impact toxin production by *Microcystis* and *Aphanizomenon* 14 (Osburn et al. 2023).
- 15 Special Study 3.5.16 Are there conditions that promote more toxic strains of16 cyanobacteria?
- Do warmer temperatures, changes in salinity, decreases in turbidity, nutrient
 limitation, changes in atmospheric carbon, or other factors contribute to
 more toxic strains of cyanobacteria in the Delta? Studies could explore
 various combinations of these factors to better understand how
 environmental drivers impact potential for toxic strains to enter the water
 column.
- 23 Special Study 3.5.17 What are the impacts of cyanotoxins, mixtures of
 24 multiple cyanotoxins, and/or mixtures of cyanotoxins with other
 25 contaminants, on aquatic resources?
- Limited information is available on how cyanotoxins impact the health of managed fish species such as Green and White Sturgeon. Since these species are benthic feeders and consume shellfish in the Delta, the fish may be
- 29 exposed to cyanotoxins through their diets (*Tim Otten, Personal*
- 30 *Conversation, February 2024*). Studies should investigate how cyanotoxins,
- and combination of cyanotoxins with other environmental contaminants,
 may impact aquatic resources including managed species in the Delta.
- 33 *Mitigation*
- 34 Special Study 3.5.18 Identify practicable Delta CHAB mitigation options

- Many CHAB mitigation options are not practical for the hydrologically 1 2 complex Delta. An assessment should be conducted of various CHAB 3 mitigation options to determine which are feasible for the Delta. Once 4 feasible mitigation options are identified the options can be refined for 5 different habitat types (e.g., flowing channels, backwater areas, channel 6 margins, etc.). Considering scale, it would also be useful to identify the 7 potential costs of implementing applicable mitigation measures. Finally, a 8 plan should be developed to outline the mitigation measures that require 9 pilot studies to confirm applicability in the Delta.
- Special Study 3.5.19 Conduct pilot studies in laboratory-based environments
 or localized areas of the Delta to evaluate potential mitigation techniques

Special studies could conduct small scale experiments to test different
 mitigation techniques. Mitigation techniques should be explored under a

range of environmental conditions to understand the true feasibility of

- 15 various techniques.
- 16 5.4 Goal 4: Define Collaborative Reporting Protocols
- Objective 4-1 Validate and standardize current methods used for
 monitoring CHABs
- **Objective 4-2 Develop protocols for accurate and timely reporting**
- 20 *Recommendation 4.1 Compare, review, and standardize sampling and laboratory*21 *methods*
- 22 Standardizing species identifications, extraction protocols, and laboratory analysis
- 23 for cyanotoxins across the Delta is important for ensuring that monitoring data
- collected by different groups are consistent and comparable (Stauffer et al. 2020).
- 25 This is especially important for data collected as part of a regular monitoring
- 26 activity (i.e., not for a special study).
- 27 Participating agencies and groups such as IEP have SOPs for various monitoring
- 28 efforts that should be considered when defining SOPs for Delta CHAB monitoring.
- 29 SWAMP protocols may also exist for many of the environmental factors that drive
- 30 CHABs, however these are for immediate response and not for routing monitoring.
- 31 These protocols include SOPs that should be utilized to develop a Delta CHAB
- 32 monitoring SOP. Whenever possible, data collection methods should follow
- 33 established norms in the Delta by existing surveys (mostly IEP).

- 1 Sampling and laboratory methods and SOPs should be consistent and
- 2 documented. SOPs should be compared across monitoring groups for consistency
- 3 and reviewed to determine where they can be optimized, including quality control
- 4 (QC) requirements, to allow standardization across monitoring groups. Where
- 5 significant discrepancies across SOPs exist, SOPs should be evaluated, and a
- 6 community consensus should attempt to mitigate these differences.
- 7 *Recommendation 4.1.1 Standardize terminology*
- 8 In addition to standardizing methods and SOPs, major relevant terms for
- 9 Delta CHABs need to be consistent. "Bloom" is an example of a term that 10 needs a specific definition and metric to meaningfully agree on monitoring
- 11 practices.
- 12 *Recommendation 4.2 Ensure CHAB related SOPs are easily accessible*
- 13 After SOPs are reviewed and standardized, they should be retained in a common
- 14 location for use by all current and future monitoring practitioners. By maintaining
- 15 this common location for materials there is no barrier to access for novel
- 16 monitoring programs and materials are not lost as staff and programs turn over.
- 17 Below, *Recommendation 5.2 Coordinate with the NOAA MERHAB data dashboard*
- 18 describes one option for the common location to store these materials.
- 19 *Recommendation 4.2.1 Create an inventory of SOPs*
- 20 An inventory listing methods and SOPs for CHAB monitoring and analysis
- 21 should be created in the same common location for ease of locating this
- 22 information. In circumstances where an SOP or method is already published
- 23 (e.g., IEP, SWAMP, USGS), the webpages for those documents should be
- 24 linked to the inventory.
- 25 *Recommendation 4.3 Develop a Programmatic Quality Assurance Program Plan*

26 (QAPrP) for Delta CHABs

- 27 A QAPrP, similar to the <u>WaterBoards SWAMP QAPrP</u>, should be developed to allow
- 28 projects implemented by partners to "enroll" under it as long as they used the
- 29 standardized procedures, approved lab methods and labs, etc. This allows project-
- 30 specific flexibility while upholding a high standard of quality assurance. The QAPrP
- 31 should include QA metrics and standardized procedures and training plan quality
- 32 control protocols such as data quality requirements for participating groups. This
- 33 QAPrP can be developed so that participating agencies can leverage the QAPrP for
- 34 individual projects implemented under the overall programmatic QAPrP. Each

- 1 CHABs monitoring participant should also maintain a quality assurance project plan
- 2 (QAPP) that adheres to the values outlined in the programmatic QAPrP
- 3 Recommendation 4.4 Develop training and intercalibration plan
- 4 The first step of the training and intercalibration plan will be identifying a person,
- 5 group, or agency that can organize and lead this annual training. The advisory
- 6 group in *Recommendation 1.2 Form advisory committee to develop final goals,*
- 7 *questions, and monitoring strategy* could take the lead on this or a volunteer could
- 8 agree to take on this recommendation. It would be useful to have a document
- 9 prepared that describes the procedures for training and the intercalibration plan.
- 10 This document could be used as the resource for the in-person training described
- 11 below.
- 12 The training should be held annually for all personnel who may collect CHAB
- 13 related field data. This training could be included in the annual meeting focused
- 14 specifically on Delta CHABs that is identified in *Recommendation 1.5 Hold an*
- 15 *annual meeting focused specifically on Delta CHABs*. Ideas for the annual training
- 16 includes a review of standard operating procedures, equipment maintenance and
- 17 calibration, decontamination protocols, health and safety protocols, and data
- 18 quality assurance and quality control protocols and standards. The lead for the
- 19 training should also consider equipment and sampling standardization that is
- 20 missing. This training could be a good opportunity to discuss ideas for
- 21 troubleshooting any issues and for identifying approaches that ensure better
- 22 standardization in the future.
- 23 Participating agency members may hold their own trainings, but it is essential that
- 24 training is provided to all personnel. Ideally, all trainings should be recorded and
- 25 documented.
- 26 Recommendation 4.5 Report on CHAB monitoring and special study findings
- 27 Present CHAB monitoring and special study findings at annual meetings
- 28 (Recommendation 1.5 Hold an annual meeting focused specifically on Delta
- 29 *CHABs*). Consider using speed talks and posters if there is not sufficient time
- 30 available to present on all studies. Researchers should focus on an open science
- 31 mindset and work to distribute findings to the best of their ability to all interested
- 32 parties. When possible, researchers should publish research papers as open access
- 33 to ensure accessibility to all interested parties.

- 1 5.5 Goal 5: Utilize a Data Sharing Platform
- **Objective 5-1 Identify existing CHAB and HAB data resources**
- Objective 5-2 Explore how to integrate Delta CHAB data with existing data
 repositories
- Objective 5-3 Develop protocols to make CHAB data accessible and
 available to all
- *Recommendation 5.1 Develop a comprehensive list of all currently used data repository platforms, data resources, and other Delta CHAB related resources*
- 9 The advisory committee should develop a comprehensive list that can then be used
- 10 in *Recommendation 5.2 Coordinate with the NOAA MERHAB data dashboard*. It is
- 11 important to recognize that the list may evolve over time as new resources become
- 12 available.
- 13 Examples of data resources that should be considered include:
- California Environmental Data Exchange Network (CEDEN)
- 15 California Data Exchange Center (CDEC)
- 16 Water Data library
- 17 Electronic Data Exchange Portal (EDI)
- United States Geological Survey Data Integration Portal Phytoplankton
 dashboard
- 20 Examples of other resources that should be considered include:
- Documents listed in *Recommendation 2.2 Consider regional, state, and national HAB documents, strategies, and guidance when developing management goals and questions*
- Delta CHAB related journal publications
- 25 *Recommendation 5.2 Coordinate with the NOAA MERHAB data dashboard*
- 26 In fall of 2023 the San Francisco Estuary Institute, United States Geological Survey,
- 27 Department of Water Resources, and project partners received funding for a five
- 28 year project to address HABs across the San Francisco Estuary, as described in
- 29 section 3.2.4 NOAA MERHAB. As part of this funding the team at San Francisco
- 30 Estuary Institute is developing a data dashboard that will bring together various
- 31 data types, including remotely sensed data, high-frequency data, and discrete data

- 1 samples. The team has assembled data transformation libraries and special scripts
- 2 to perform these integration tasks affordably and reliably. The data integration
- 3 platform and data dashboard work hand-in-hand to ensure alignment among
- 4 various partners, community members, Tribes, researchers, and decision makers.
- 5 The MERHAB project team agrees that this data dashboard offers a promising
- 6 platform to integrate historic and existing CHAB data from the Delta in line with the
- 7 recommendations in this strategy..
- 8 The data dashboard is still in the early stages of development, but there are plans
- 9 to develop crosswalks to make data more available and comparable across
- 10 agencies. Crosswalks will allow databases to remain with their hosts.
- 11 Although the funding for the data dashboard is tied to the MERHAB project funding,
- 12 it is a goal of the MERHAB team to secure long-term funding for the data
- 13 dashboard. Leveraging the MERHAB data dashboard provides a unique opportunity
- 14 to integrate all San Francisco Estuary HAB data and resources into a single
- 15 platform.
- 16 *Recommendation 5.3 Develop and maintain list of all routine and special studies*
- 17 Many groups are working on various aspects of CHAB monitoring. This strategy is
- 18 intended to increase coordination among these different entities. Nevertheless, due
- 19 to discrete funding opportunities and the large number of people who are working
- 20 on CHAB issues in the Delta it is often difficult to be aware of all of the different
- 21 monitoring efforts and special studies that are occurring at any given time.
- 22 Organizing a location within the data dashboard (*Recommendation 5.2 Coordinate*
- 23 *with the NOAA MERHAB data dashboard*) where people can list a high level
- 24 overview of their work and contact information would increase coordination
- 25 efforts. This recommendation will rely on individuals to self-report. However, with
- 26 the common goal of sharing the information identified here, individuals
- 27 participating in the advisory committee and other associated groups will have
- 28 access to all relevant CHABs information and can encourage individuals to self-
- 29 report.
- 30 *Recommendation 5.4 Incorporate open data principles*
- 31 In line with the special study recommended in the FHAB Strategy "SS4: Develop
- 32 partner program open data systems" it will be important to incorporate open data
- 33 principals for all Delta CHAB data and findings. Incorporating open data principles
- 34 means data should be freely accessible, usable, and shareable for any purpose.

- 1 Open data principals are outlined in AB 1755 Open Water Data Act, which directs all
- 2 water data in the state to be accessible and available to the public (AB-1755
- 3 (ca.gov)), FAIR principles (<u>https://www.go-fair.org/fair-principles/</u>), and SWB's Open
- 4 Data Resolution's Handbook (Data Tool Kit Open Data Handbook | California State
- 5 <u>Water Resources Control Board</u>). These resources should be utilized when
- 6 considering how to best consolidate and share data.
- 7 The MERHAB data dashboard will utilize open data principles by providing data
- 8 management and visualization infrastructure to communicate Delta CHAB findings.
- 9 However, as noted in the FHAB Strategy some disadvantaged communities may
- 10 have poor access to electronic information. Thus, those with data to share should
- 11 consider multiple dissemination modes and not rely entirely on the data
- 12 dashboard. The annual meeting (*Recommendation 1.5 Hold an annual meeting*
- 13 *focused specifically on Delta CHABs*) will be one tool that can be used to
- 14 communicate findings beyond the data dashboard.
- 15

1 Table 6. Recommendations and Objectives that they address

Recommendation	Primary Objective(s)	Secondary Objective(s)
<i>Recommendation 1.1 Identify co-chairs or mechanism for someone to lead coordination and implementation of Delta CHAB strategy</i>	1-1	1-2, 1-3
<i>Recommendation 1.2 Form advisory committee to develop final goals, questions, and monitoring strategy.</i>	1-1	1-2, 1-3, 2-1, 2-2, 2-3, 4-1, 4-2, 5-1, 5-2, 5-3
<i>Recommendation 1.3 Identify existing barriers to collaboration/cooperation and identify methods for overcoming them</i>	1-2	1-1, 1-3
<i>Recommendation 1.4 Strengthen and expand partner relationships</i>	1-2, 1-3	1-1, 2-1, 2-2, 2-3
<i>Recommendation 1.5 Hold an annual meeting focused specifically on Delta CHABs</i>	1-2, 1-3	1-1, 2-1, 2-2. 2-3, 3-1, 3-2, 3-3, 3-4, 4-1, 4-2, 5-1, 5-2, 5-3
Recommendation 1.6 Identify funding to support implementation of the CHAB Monitoring Strategy	1-3	1-1. 1-2
<i>Recommendation 2.1 Consider the amount and type of monitoring information needed by managers to support decision making</i>	2-1	2-2, 2-3, 3-1, 3-2, 3-3, 3-4
Recommendation 2.2 Consider regional, state, and national HAB documents, strategies, and guidance when developing management goals and questions	2-3	2-1, 2-2, 3-1, 3-2, 3-3, 3-4
<i>Recommendation 2.3 When possible, coordinate Delta CHAB questions and goals with ongoing local and state efforts</i>	2-3	2-1, 2-2, 3-1, 3-2, 3-3, 3-4
<i>Recommendation 2.4 Provide approach(es) for prioritizing management questions and goals</i>	2-2	1-1, 1-2, 1-3, 2-1, 2-3, 3-1, 3-2, 3-3, 3-4

<i>Recommendation 2.5 Publish and share final management questions and goals with all interested parties</i>	2-2	1-1, 1-2, 1-3, 2-1, 2-3, 3-1, 3-2, 3-3, 3-4
<i>Recommendation 3.1 Based on the goals and objectives developed in Goal 2 identify monitoring programs and special studies needed to achieve outcomes</i>	3-1, 3-2, 3-3	2-1, 2-2, 2-3, 3-4
<i>Recommendation 3.2. Develop monitoring program(s) design characteristics</i>	3-2, 3-3	2-1, 2-2, 2-3, 3-1, 3-4
<i>Recommendation 3.3 Based on recommendations described above, design monitoring program(s)</i>	3-2, 3-3	2-1, 2-2, 2-3, 3-1, 3-4
<i>Recommendation 3.4 Consider resources that are currently available or that may be available in the future</i>	3-4	2-1, 2-2, 2-3, 3-1, 3-2, 3-3
<i>Recommendation 3.5 Implement special studies to address data gaps and technical questions</i>	3-3	2-1, 2-2, 2-3, 3-1, 3-2, 3-4
<i>Recommendation 4.1 Compare, review, and standardize sampling and laboratory methods</i>	4-1	4-2
<i>Recommendation 4.2 Ensure CHAB related SOPs are easily accessible</i>	4-1	3-1, 3-2, 3-3, 3-4, 4-2
<i>Recommendation 4.3 Develop a programmatic Quality Assurance Program Plan (QAPrP) for Delta CHABs</i>	4-1	3-1, 3-2, 3-3, 3-4, 4-2
<i>Recommendation 4.4 Develop training and intercalibration plan</i>	4-1	3-1, 3-2, 3-3, 3-4, 4-2
<i>Recommendation 4.5 Report on CHAB monitoring and special study findings</i>	4-2	3-1, 3-2, 3-3, 3-4, 4-1
<i>Recommendation 5.1 Develop a comprehensive list of all currently used data repository platforms, data resources, and other Delta CHAB related resources</i>	5-1	5-2, 5-3
<i>Recommendation 5.2 Coordinate with the NOAA MERHAB data dashboard</i>	5-2, 5-3	3-1, 3-2, 3-3, 3-4, 5-1
<i>Recommendation 5.3 Develop and maintain list of all routine and special studies</i>	5-2	5-1, 5-3

3-1, 3-2, 3-3, 3-4, 5-1, 5-2

1

2 6 Adaptive Management

- To create a monitoring plan that best meets
 management needs, an adaptive management
 approach should be incorporated (Delta ISB 2022). This
 document supports adaptive management through
 iterative implementation of the goals and objectives:
- Monitoring is tied to management questions,
 goals and objectives (Goal 2)
- The management questions are used to design
 the monitoring program (Goal 3)
- Information resulting from monitoring efforts
 are communicated widely (Goals 4 and 5) to
 facilitate learning.

Figure 17. Adaptive Management Cycle

- 15 *Recommendations 2.4 Provide approach(es) for prioritizing management questions*
- 16 *and goals* and *2.5 Publish and share final management questions and goals with all*
- 17 *interested parties* detail more information about prioritization of management
- 18 questions, which should be used to define criteria for achieving progress made
- 19 toward addressing goals and objectives of the monitoring program.
- 20 *Recommendation 1.5 Hold an annual meeting focused specifically on Delta CHABs*
- 21 calls for an annual meeting to discuss findings from monitoring and progress made
- 22 on CHABs data collection which creates a natural opportunity to discuss progress
- 23 made toward defined management objectives and evaluate the monitoring
- 24 program plan to adapt before the next data collection season.
- 25 The structure proposed in this strategy can be iteratively applied to evaluate
- 26 progress toward defined management goals and to inform adjustments to the
- 27 strategy as needed. At a minimum this strategy should be revisited every 3 to 5
- 28 years. However, since there is no funding attached to this strategy the advisory
- 29 committee will need to seek volunteers to spend time working through the adaptive
- 30 monitoring process.
- 31 As part of the review process the following items should be considered:

1. Assess and report progress towards each of the goals and objectives. 1 2 Describe any changes in management objectives or needs 3 3. Describe any new technologies that could be leveraged in the strategy 4 Assess the extent to which the strategy is meeting current management 5 objectives and information needs 6 5. Propose any necessary changes to the strategy to better meet current 7 management objectives and information needs, while maintaining long-term 8 data comparability

9 7 Implementation

- 10 Full implementation of the recommendations in this strategy will require
- 11 considerable time and funding. As stated above, there is no funding associated
- 12 with this strategy and implementation of the recommendations within this
- 13 document. As such, it will be necessary for volunteers to implement
- 14 recommendations in this document and for additional funding to be secured. As
- 15 described in *Recommendation 1.6 Identify funding to support implementation of*
- 16 *the CHAB Monitoring Strategy* there are a number of mechanisms through which
- 17 funding could be secured to help implement this entire strategy.
- 18 Implementation of all the recommendations in this document would benefit from
- 19 the development of implementation guidance with input from partners to develop
- 20 a coordinated monitoring program. This could be through the advisory committee
- 21 (Recommendation 1.2 Form advisory committee to develop final goals, questions,
- 22 *and monitoring strategy*.) or through some other mechanism. Although
- 23 implementation guidance will ensure that the recommendation in this document
- 24 are undertaken through a coordinated approach there are a number of
- 25 recommendations that can be implemented immediately if resources are available
- 26 to undertake the efforts.
- 27 It will also be important to leverage ongoing related work to implement these
- 28 recommendations. When possible, these leveraging opportunities have been
- 29 identified throughout this document.
- 30 This strategy is focused on informing water quality management decisions in a 3- to
- 31 5-year horizon, consistent with the FHAB Strategy's guidance of a "near-term"
- 32 implementation. However, recommendations in this Strategy may also fall under
- 33 long-term implementation of >5 years and are included for consideration as this

- 1 Strategy is implemented. Recommendations that are identified as long-term
- 2 priorities can be implemented once funds and resources become available.
- 3 7.1 Near-Term Implementation
- 4 The first steps in the near-term implementation of this strategy will be to
- 5 implement *Recommendation 1.1 Identify co-chairs or mechanism for someone to*
- 6 lead coordination and implementation of Delta CHAB strategy and
- 7 Recommendation 1.2 Form advisory committee to develop final goals, questions,
- 8 *and monitoring strategy.* Many of the recommendations that follow involve action
- 9 by the co-chairs/mechanism to lead the strategy and the advisory committee. Once
- 10 these recommendations have been achieved the next high priority task will be to
- 11 implement Goal 2 Identify management questions, monitoring goals, and
- 12 objectives. This will be important to ensure that there is a coordinated approach to
- 13 implementing this strategy.
- 14 Within Goal 2 is *Recommendation 2.4 Provide approach(es) for prioritizing*
- 15 *management questions and goals* which can be used in deciding next steps in the
- 16 implementation process.
- 17 It is important to recognize that this strategy and ongoing Delta CHAB efforts are
- 18 fluid. Components of this strategy are being implemented while the document is
- 19 being written. The adaptive management framework can be used to address this
- 20 fluidity, but it is also important to recognize that some components will be
- 21 implemented prior to the full adoption of the document. Part of the real-time
- 22 process involves meetings where partners volunteer to take on components of this
- 23 document. Ideally future meetings will be funneled through the advisory committee
- 24 for a coordinated Delta CHAB approach.
- 25 7.2 Long-Term Implementation
- 26 The strategy should be revisited every 3 or 5 years via the adaptive management
- 27 process. This should include new data, new technologies, and an assessment of the
- 28 near-term implementation process. The process should also consider identifying
- 29 long-term goals beyond those that are captured in the document.

1 Appendix A

- 2 Additional station maps.
- 3

- 4
- 5 Figure 18. Map of continuous water flow stations that measure flow, velocity, and/or river
- 6 stage.
- 7

3 Figure 19. Map of total phosphorus and/or dissolved orthophosphate measurement locations.

1 References

- 2 Allen, W.E. 1920. A quantitative and statistical study of the plankton of the San
- 3 Joaquin. University of California Publications in Zoology. 22:1–292. Available from:
- 4 https://www.biodiversitylibrary.org/item/44205#page/5/mode/1up
- 5 Alpine, A. E., & Cloern, J. E. 1988. Phytoplankton growth rates in a light-limited
- 6 environment, San Francisco Bay. Marine Ecology Progress Series. 44(2), 167-173.
- 7 Anderson, D.M.; Fensin, E.; Gobler, C.J.; Hoeglund, A.E.; Hubbard, K.A.; Kulis, D.M.;
- 8 Landsberg, J.H.; Lefebvre, K.A.; Provoost, P.; Richlen, M.L. Smith, J.L., Solow, A.R,
- 9 Trainer, V.L. 2021. Marine Harmful Algal Blooms (HABs) in the United States:
- 10 History, Current Status and Future Trends. Harmful Algae 102, 101975
- 11 Arthur J.F., Ball M.D., Baughman S.Y. 1996. Summary of federal and state water
- 12 project environmental impacts in the San Francisco Bay-Delta Estuary, California. In
- 13 San Francisco Bay: The Ecosystem. Hollibaugh J.T. (ed.). Pacific Division. American
- 14 Association for the Advancement of Science: San Francisco. CA; 445-449.
- 15 Bashevkin, S.M., Perry, S.E., Stumpner, E.B. 2022. Six decades (1959-2021) of water
- 16 quality in the upper San Francisco Estuary: an integrated database of 15 discrete
- 17 monitoring surveys in the Sacramento San Joaquin Delta, Suisun Bay, Suisun Marsh,
- 18 and San Francisco Bay ver 5. Environmental Data Initiative.
- 19 <u>https://doi.org/10.6073/pasta/c9b3da65a8c89cbfa6fc28d26f938c22</u>
- 20 Berg, G.M., Shrager, J., van Dijken, G., Mills, M.M., Arrigo, K.R., Grossman, A.R. 2011.
- 21 Responses of psbA, hli, and ptox genes to changes in irradiance in marine
- 22 Synechococcus and Prochlorococcus. Aquatic Microbology and Ecology 65:1-14
- 23 Berg, M., Sutula, M. 2015. Factors affecting the growth of cyanobacteria with special
- 24 emphasis on the Sacramento–San Joaquin Delta. Southern California Coastal Water
- 25 Research Project Technical Report 869. Available from: https://amarine.com/wp-
- 26 content/uploads/2018/01/ Cyano_Review_Final.pdf
- 27 Bertone, E., Chuang, A., Burford, M. A., Hamilton, D. P. 2019. In-situ fluorescence
- 28 monitoring of cyanobacteria: Laboratory-based quantification of species-specific
- 29 measurement accuracy. Harmful Algae, 87, 101625.
- 30 Bolotaolo, M., Kurobe, T., Puschner, B., Hammock, B.G., Hengel, M.J., Lesmeister, S.,
- Teh, S.J., 2020. Analysis of Covalently Bound Microcystins in Sediments and Clam
- 32 Tissue in the Sacramento–San Joaquin River Delta, California, USA. Toxins 12, 178.
- 33 https://doi.org/10.3390/toxins12030178

- 1 Bormans, M., Legrand, B., Waisbord, N., & Briand, E. 2023. Morphological and
- 2 physiological impacts of salinity on colonial strains of the cyanobacteria Microcystis
- 3 aeruginosa. MicrobiologyOpen, 12(3), e1367.
- 4 Bricker, S.B., Ferreira, J.G., Simas, T. 2003. An integrated methodology for
- 5 assessment of estuarine trophic status. Ecological Modelling, 169, 39e60.
- 6 Bui T, Dao TS, Vo TG, Lurling M (2018) Warming affects growth rates and
- 7 microcystin production in tropical bloom-forming Microcystis strains. Toxins
- 8 2018(10)123. doi:10.3390/toxins10030123
- 9 Cai, P., Cai, Q., He, F., Huang, Y., Tian, C., Wu, X., ... & Xiao, B. (2021). Flexibility of
- 10 Microcystis overwintering strategy in response to winter temperatures.
- 11 Microorganisms, 9(11), 2278.
- 12 Carey CC, Ibelings BW, Hoffman EP, Hamilton DP, Brookes JD (2012) Eco-
- 13 physiological adaptations that favour freshwater cyanobacteria in a changing
- 14 climate. Water Research 46:1394-1407.
- 15 Carstensen, J., Sanchez-Camacho, M., Duarte, C.M., Krause-Jensen, D., and Marba,
- 16 N. 2011. Connecting the dots: responses of coastal ecosystems to changing nutrient
- 17 concentrations. Environmental Science and Technology, 45, 9122–9132
- 18 Carstensen J., Klais R., Cloern J.E. 2015. Phytoplankton blooms in estuarine and
- 19 coastal waters: seasonal patterns and key species. Estuarine, Coastal and Shelf
- 20 Science 162: 98-109. https://doi.org/10.1016/j.watres.2018.10.034
- 21 CCHAB Network. 2022. California HABs Portal. Available from:
- 22 https://mywaterquality.ca.gov/monitoring_council/cyanohab_network/
- 23 Choo, F., Zamyadi, A., Stuetz, R.M., Newcombe, G., Newton, K., Henderson, R.K.
- 24 2022. Enhanced real-time cyanobacterial fluorescence monitoring through
- chlorophyll-a interference compensation corrections. Water Research 148: 86-96.
- 26 Cloern, J.E. 1987. Turbidity as a control on phytoplankton biomass and productivity
- 27 in estuaries. Continental Shelf Research 7:1367-1381.
- 28 Cloern, J.E. 1991. Tidal stirring and phytoplankton bloom dynamics in an estuary.
- 29 Journal of Marine Research 49:203-221.
- 30 Cloern, J.E. 1999. The relative importance of light and nutrient limitation of
- 31 phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient
- 32 enrichment. Aquatic Ecology, 33, 3-15.

- 1 Cloern, J. E., Jassby, A. D. 2012. Drivers of change in estuarine-coastal ecosystems:
- 2 Discoveries from four decades of study in San Francisco Bay. Reviews of
- 3 Geophysics, 50(4).
- 4 Cloern, J.E., Foster, S.Q., Kleckner, A.E. 2014. Review: phytoplankton primary
- 5 production in the world's estuarine–coastal ecosystems Biogeoscience
- 6 Discussions, 10: 17725-17783. doi: 10.5194/bgd-10-17725-2013
- 7 Dahm, C.N., Parker, A.E., Adelson, A.E., Christman, M.A., Bergamaschi, B.A. 2016.
- 8 Nutrient Dynamics of the Delta: Effects on Primary Producers. San Francisco
- 9 Estuary and Watershed Science 14.
- 10 (Delta ISB) Delta Independent Science Board. 2022. Review of the Monitoring
- 11 Enterprise in the Sacramento-San Joaquin Delta. Report to the Delta Stewardship
- 12 Council. Sacramento, California.
- Delta Science Program. 2023. Delta Harmful Algal Blooms Monitoring November
 2022 Workshop Summary. DOI: 10.13140/RG.2.2.13193.93287
- 15 Dillon P.J., Rigler F.H. 1975. A simple method for predicting the capacity of a lake for
- 16 development based on lake trophic status. Journal of the Fisheries Research Board
- 17 of Canada 32:1519-1531.
- 18 Edwards V.R., Tett P., Jones K.J. 2003. Changes in the yield of chlorophyll from
- 19 dissolved available inorganic nitrogen after an enrichment event applications for
- 20 predicting eutrophication in coastal waters. Continental Shelf Research 23:1771-
- 21 1786.
- 22 Downing, B.D., Bergamaschi, B.A., Kendall, C., Kraus, T.E., Dennis, K.J., Carter, J.A.,
- 23 Von Dessonneck, T.S. 2016. Using continuous underway isotope measurements to
- 24 map water residence time in hydrodynamically complex tidal
- environments. Environmental Science & Technology, 50(24), 13387-13396.
- 26 Dugdale, R.C., Wilkerson, F.P., Hogue, V.E., Marchi, A. 2007. The role of ammonium
- and nitrate in spring bloom development in San Francisco Bay. Estuarine, Coastal
- 28 and Shelf Science 73(1):17-29. https://doi.org/10.1016/j.ecss.2006.12.008
- 29 Flynn, T., Lehman, P., Lesmeister, S., Waller, S. 2022. A Visual Scale for Microcystis
- 30 Bloom Severity. figshare. Figure. https://doi.org/10.6084/m9.figshare.19239882.v1
- Foy, R.H. 1993. The phycocyanin to chlorophyll a ratio and other cell components as
- 32 indicators of nutrient limitation in two planktonic cyanobacteria subjected to low-
- 33 light exposures. Journal of Plankton Research 15:1263-1276.

- 1 Georges des Aulnois, M., Réveillon, D., Robert, E., Caruana, A., Briand, E., Guljamow,
- 2 A., Dittman, E., Amzil, Z., Bormans, M. 2020. Salt shock responses of Microcystis
- 3 revealed through physiological, transcript, and metabolomic analyses. Toxins, 12(3),
- 4 192.
- 5 Gowen R.J., Tett P., Jones K.J. 1992. Predicting marine eutrophication: the yield of
- 6 chlorophyll from nitrogen in Scottish coastal waters. Marine Ecology Progress Series
- 7 85:153-161.
- 8 Gross, E., Andrews, S., B. Bergamaschi, B., Downing, B., Holleman, R., Burdick, S.,
- 9 Durand, J. 2019. The use of stable isotope-based water age to evaluate a
- 10 hydrodynamic model. Water 11:2207. 10.3390/w11112207
- 11 Hagemann M. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol.
- 12 Rev. 2011;35:87–123. doi: 10.1111/j.1574-6976.2010.00234.x
- 13 Hagy, J.D., Boynton, W.R., Keefe, C.W., Wood, K.V., 2004. Hypoxia in Chesapeake
- 14 Bay, 1950e2001: Long-term Change in Relation to Nutrient Loading and River Flow.
- 15 Estuaries, 27, 634e658.
- 16 Harding Jr., L.W., Batiuk, R.A., Fisher, T.R., Gallegos, C.L., Malone, T.C., Miller, W.D.,
- 17 Mulholland, M.R., Paerl, H.W., Perry, E.S., Tango, P. 2014. Scientific bases for
- 18 numerical chl-a criteria in Chesapeake Bay. Estuaries and Coasts, 37, 134e148.
- 19 Harke, M.J., Steffen, M.M., Gobler, C.J., Otten, T.G., Wilhelm, S.W., Wood, S.A., Paerl,
- 20 H.W. 2016. A review of the global ecology, genomics, and biogeography of the toxic
- 21 cyanobacterium, Microcystis spp. Harmful Algae. 54:4–20.
- 22 https://doi.org/10.1016/j.hal.2015.12.007
- 23 Hartman R., N. Rasmussen, D. Bosworth, M. Berg, E. Ateljevich, T. Flynn, B. Wolf, T.
- 24 Pennington, S. Khanna. 2022. Temporary Urgency Change Petition of 2021 and
- 25 emergency drought salinity barrier: impact on harmful algal blooms and aquatic
- 26 weeds in the Delta. Sacramento (CA): California Department of Water Resources.
- 27 May 2022. 188 pp. + appendix.
- 28 Hooker, S. B., VanHeukelem, L. 2011. An investigation into HPLC data quality
- 29 problems (NASA No. GSFC. TP. 4315.2011).
- 30 Howard, M.D., Nagoda, C., Kudela, R.M., Hayashi, K., Tatters, A., Caron, D.A., Busse,
- 31 L., Brown, J., Sutula, M., Stein, E.D. 2017. Microcystin prevalence throughout lentic
- 32 waterbodies in coastal southern California. Toxins 9(7):231.
- 33 https://doi.org/10.3390/toxins9070231

- 1 Howard, M.D., Smith, J., Caron, D.A., Kudela, R.M., Loftin, K., Hayashi, K., Fadness, R.,
- 2 Fricke, S., Kann, J., Roethler, M., Tatters, A., 2022. Integrative Monitoring Strategy for
- 3 Marine and Freshwater Harmful Algal Blooms and Toxins Across the Freshwater-to-
- 4 Marine Continuum. Integrated Environmental Assessment and Management
- 5 19(3):586-604. doi.org/10.1002/ieam.4651
- 6 Huisman J., Jonker R.R., Zonneveld C., Weissing F.J. 1999. Competition for light
- 7 between phytoplankton species: experimental tests of mechanistic theory. Ecology
- 8 80:211-222.
- 9 Ibelings B.W., Kroon B., Mur L.R. 1994. Acclimation of photosystem II in a
- 10 cyanobacterium and a eukaryotic green alga to high and fluctuating photosynthetic
- 11 photon flux densities, simulating light regimes induced by mixing in lakes. New
- 12 Phytologist, 128:407-424
- 13 Janse I, Meima M, Kardinaal WEA, Zwart G (2003) High-resolution differentiation of
- 14 cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel
- 15 electrophoresis. Applied and Environmental Microbiology 69:6634-6643.
- 16 doi:10.1128/AEM.69.11.6634-6643.2003
- 17 Jassby, A. D., W. J. Kimmerer, W. J., Monismith, S. G., Armor, C., J. E. Cloern, J. E., T.
- 18 M. Powell, T. M. J. R. Schubel, J. R., T. J. Vendlinski, T. J.. 1995. Isohaline position as a
- 19 habitat indicator for estuarine populations, Ecological Applications, 5(1), 272–289,
- 20 doi:10.2307/1942069.
- 21 Jassby, A.D., Cloern, J.E. 2000. Organic matter sources and rehabilitation of the
- 22 Sacramento-San Joaquin Delta (California, USA). Aquatic Conservation: Marine and
- 23 Freshwater Ecosystems 10(5); 323-352.
- 24 Jassby A.D., Cloern, J.E., Cole, B.E. 2002. Annual primary production: patterns and
- 25 mechanisms of change in a nutrient-rich tidal estuary. Limnology and
- 26 Oceanography 47(3):698–712.
- 27 Jassby, A.D. 2008. Phytoplankton in the Upper San Francisco Estuary, Recent
- 28 biomass trends, their causes, and their trophic significance San Francisco Estuary
- 29 and Watershed Science, 6 (1) Article 2
- 30 Jeffrey, S.W. Wright, S., Zapata, M. 2011. Microalgal classes and their signature
- 31 pigments. University of Tasmania. Chapter.
- 32 https://hdl.handle.net/102.100.100/535302

- 1 Kemp, W.M., Boynton, W.R., Adolf, J.E., Boesch, D.F., Boicourt, W.C., Brush, G.,
- 2 Cornwell, J.C., Fisher, T.R., Glibert, P.M., Hagy, J.D., Harding Jr., L.W., Houde, E.D.,
- 3 Kimmel, D.G., Miller, W.D., Newell, R.I.E., Roman, M.R., Smith, E.M., Stevenson, J.C.,
- 4 2005. Eutrophication of Chesapeake Bay: historical trends and ecological
- 5 interactions. Marine Ecology Progress Series, 303, 1e29.
- 6 Kemp, A., & John, J. 2006. Microcystins associated with Microcystis dominated
- 7 blooms in the southwest wetlands, Western Australia. Environmental Toxicology:
- 8 An International Journal, 21(2), 125-130.
- 9 Kimmerer. W. 2004. Open water processes of the San Francisco Estuary: from
- 10 physical forcing to biological responses. San Francisco Estuary and Watershed
- 11 Science. 2(1). doi.org/10.15447/sfews.2004v2iss1art1
- 12 Kimmerer, W. J., Rose, K. A. 2018. Individual-based modeling of delta smelt
- 13 population dynamics in the Upper San Francisco Estuary III. Effects of entrainment
- 14 mortality and changes in prey. Transactions of the American Fisheries
- 15 Society, 147(1), 223-243.
- 16 Kimmerer W, Wilkerson F, Downing B et al. (2019) Effects of drought and the
- 17 emergency drought barrier on the ecosystem of the California Delta. San Francisco
- 18 Estuary & Watershed Science 17(3) doi.org/10.15447/sfews.2019v17iss3art2
- Kong, W., Liu, N., Zhang, J., Yang, Q., Hua, S., Song, H., & Xia, C. 2014. Optimization of
- 20 ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris
- 21 residue after lipid separation using response surface methodology. Journal of food
- science and technology, 51, 2006-2013.
- 23 Kopfmann, S., Roesch, S., Hess, W., 2016. Type II Toxin–Antitoxin Systems in the
- 24 Unicellular Cyanobacterium Synechocystis sp. PCC 6803. Toxins 8, 228.
- 25 https://doi.org/10.3390/toxins8070228
- 26 Kramer, S. J., Siegel, D. A. 2019. How can phytoplankton pigments be best used to
- 27 characterize surface ocean phytoplankton groups for ocean color remote sensing
- algorithms?. Journal of Geophysical Research: Oceans, 124(11), 7557-7574.
- 29 Kratzer CR, Kent R, Seleh DK, Knifong DL, Dileanis PD, Orlando JL (2011) Trends in
- 30 nutrient concentrations, loads, and yields in streams in the Sacramento, San
- 31 Joaquin, and Santa Ana Basins, California, 1975-2004. Denver (CO): US Department
- 32 of the Interior, US Geological Survey. Scientific Investigations Report 2010-5228.
- 33 112p.

- 1
- 2 Kudela R.M. 2011. Characterization and deployment of Solid Phase Adsorption
- 3 Toxin Tracking (SPATT) resin for monitoring of microcystins in fresh and saltwater.
- 4 Harmful Algae.. https://doi.org/10.1016/j.hal.2011.08.006
- 5 Kudela, R., Howard, M., Monismith, S., Paerl, H. 2023. Status, Trends, and Drivers of
- 6 Harmful Algal Blooms Along the Freshwater-to-Marine Gradient in the San
- 7 Francisco Bay–Delta System. SFEWS 20.
- 8 https://doi.org/10.15447/sfews.2023v20iss4art6
- 9 Lehman, P.W., Boyer, G., Hall, C., Waller, S., Gehrts, K., 2005. Distribution and
- 10 toxicity of a new colonial Microcystis aeruginosa bloom in the San Francisco Bay
- 11 Estuary, California. Hydrobiologia 541, 87–99. https://doi.org/10.1007/s10750-004-
- 12 4670-0
- 13 Lehman, P.W., Boyer, G., Satchwell, M., Waller, S., 2008. The influence of
- 14 environmental conditions on the seasonal variation of Microcystis cell density and
- 15 microcystins concentration in San Francisco Estuary. Hydrobiologia 600, 187–204.
- 16 https://doi.org/10.1007/s10750-007-9231-x
- 17 Lehman, P.W., Teh, S.J., Boyer, G.L., Nobriga, M.L., Bass, E., Hogle, C. 2010. Initial
- 18 impacts of Microcystis aeruginosa blooms on the aquatic food web in the San
- 19 Francisco Estuary. Hydrobiologia 637, 229–248. https://doi.org/10.1007/s10750-009-
- 20 9999-у
- 21 Lehman, P.W., Marr, K., Boyer, G.L., Acuna, S., & Teh, S.J. 2013. Long-term trends
- 22 and causal factors associated with Microcystis abundance and toxicity in San
- 23 Francisco Estuary and implications for climate change impacts. Hydrobiologia, 718,
- 24 141-158.
- Lehman, P.W., Kurobe, T., Lesmeister, S., Baxa, D., Tung, A., Teh, S.J., 2017. Impacts
- 26 of the 2014 severe drought on the Microcystis bloom in San Francisco Estuary.
- 27 Harmful Algae 63, 94–108. https://doi.org/10.1016/j.hal.2017.01.011
- Lehman, P. W., Kurobe, T., Teh, S. J. 2022. Impact of extreme wet and dry years on
- 29 the persistence of Microcystis harmful algal blooms in San Francisco
- 30 Estuary. Quaternary International, 621, 16-25.
- 31 Lehman P.W., Kurobe T., Huynh K., Lesmeister S., Teh S.J. 2021. Covariance of
- 32 phytoplankton, bacteria, and zooplankton communities within Microcystis blooms

- 1 in San Francisco Estuary. Frontiers in Microbiology.
- 2 https://doi.org/10.3389/fmicb.2021.632264
- 3 Lehman, P.W., Kurobe, T., Teh, S.J., 2022. Impact of extreme wet and dry years on
- 4 the persistence of Microcystis harmful algal blooms in San Francisco Estuary.
- 5 Quaternary International 621, 16–25. https://doi.org/10.1016/j.quaint.2019.12.003
- 6 Lehman, P. 2022. The increase of cyanobacteria and benthic diatoms over 43 years
- 7 in upper San Francisco Estuary, California. Estuarine, Coastal and Shelf Science 275,
- 8 107988. https://doi.org/10.1016/j.ecss.2022.107988
- 9 Lenoch L.K., Stumpner P.R., Burau J.R., Loken L.C., Sadro S. 2021. Dispersion and
- 10 stratification dynamics in the Upper Sacramento River Deep Water Ship Channel.
- 11 San Francisco Estuary and Watershed Science, 19(4)
- 12 Li, X., Li, L., Huang, Y., Wu, H., Sheng, S., Jiang, X., Chen, X., Ostrovsky, I. 2024.
- 13 Upstream nitrogen availability determines the Microcystis salt tolerance and
- 14 influences microcystins release in brackish water. Water Research, 121213.
- 15 Loken L.C., Sadro S., Lenoch L.E., Stumpner P.R., Dahlgren R.A., Burau J.R., Van
- 16 Nieuwenhuyse E.E. 2022. Whole-ecosystem experiment illustrates short timescale
- 17 hydrodynamic, light, and nutrient control of primary production in a terminal
- 18 slough. Estuaries and Coasts 45:2428-2449
- 19 Lopez CB, Cloern JE, Schraga TS, Little AJ, Lucas LV, Thompson JK, Burau JR (2006)
- 20 Ecological values of shallow-water habitats: implications for the restoration of
- 21 disturbed ecosystems. Ecosystems. 9:422–440.
- 22 Lucas, L.V., Cloern, J.E. 2002. Effects of tidal shallowing and deepening on
- 23 phytoplankton production dynamics: A modeling study. Estuaries, 25, 497-507.
- Lürling, M., Eshetu, F., Faassen, E.J., Kosten, S., & Huszar, V.L. 2013. Comparison of
- 25 cyanobacterial and green algal growth rates at different temperatures. Freshwater
- 26 Biology, 58(3), 552-559.
- 27 Ma, L., Moradinejad, S., Guerra Maldonado, J.F., Zamyadi, A., Dorner, S., Prévost, M.
- 28 2022. Factors Affecting the Interpretation of Online Phycocyanin Fluorescence to
- 29 Manage Cyanobacteria in Drinking Water Sources. Water 14, 3749.
- 30 https://doi.org/10.3390/w14223749
- 31 Mackey, M.D., Mackey, D.J., Higgins, H.W., & Wright, S.W. 1996. CHEMTAX-a program
- 32 for estimating class abundances from chemical markers: application to HPLC
- 33 measurements of phytoplankton. Marine Ecology Progress Series, 144, 265-283.

- 1 MacKeigan, P.W., Garner, R.E., Monchamp, M.E., Walsh, D.A., Onana, V.E., Kraemer,
- 2 S.A., Pick, F.R., Beisner, B.E., Agbeti, M.D., da Costa, N.B. and Shapiro, B.J., 2022.
- 3 Comparing microscopy and DNA metabarcoding techniques for identifying
- 4 cyanobacteria assemblages across hundreds of lakes. Harmful Algae, 113,
- 5 p.102187.
- 6 May, C.L., Koseff, J.R., Lucas, L.V., Cloern, J.E., & Schoellhamer, D.H. 2003. Effects of
- 7 spatial and temporal variability of turbidity on phytoplankton blooms. Marine
- 8 Ecology Progress Series, 254, 111-128.
- 9 McDonald E.T., Cheng R.T. 1997. A numerical model of sediment transport applied
- 10 to San Francisco Bay, California. Journal of Marine Environmental Engineering
- 11 4:1041.
- 12 Melero-Jiménez, I.J., Martín-Clemente, E., García-Sánchez, M.J., Flores-Moya, A.,
- 13 Bañares-España, E. 2019. Adaptation of the toxic freshwater cyanobacterium
- 14 Microcystis aeruginosa to salinity is achieved by the selection of spontaneous
- 15 mutants. Phycological Research, 67(3), 192-201.
- 16 Miller M.A., Kudela, R.M., Mekebri, A., Crane, D., Oates, C., Tinker, M.T., Staedler, M.,
- 17 Miller, W.A., Toy–Choutka, S., Dominik, C., Hardin, D., Langlois, G., Murray, M.,
- 18 Ward., Jessup, D.A. 2010. Evidence for a novel marine harmful algal bloom:
- 19 cyanotoxin (microcystin) transfer from land to sea otters. PLoS ONE. 5(9):e12576.
- 20 https://doi.org/10.1371/journal.pone.0012576
- 21 Mioni, C., Kudela, R., Baxa, D., Sullivan, M., Hayash, K., Smythe, U.T., White, C. 2011.
- 22 Harmful cyanobacteria blooms and their toxins in Clear Lake and the Sacramento-
- 23 San Joaquin Delta (California). Rancho Cordova (CA): Central Valley Regional Water
- 24 Quality Control Board. Surface Water Ambient Monitoring Program (SWAMP)
- 25 Report #10-058-150. Available from:
- 26 https://www.lakecountyca.gov/Assets/Departments/
- 27 WaterResources/Algae/2011+Cyanobacteria+Report.pdf
- 28 Mitrovic, S.M., Howden, C.G., Bowling, L.C., Buckney, R.T. 2003. Unusual allometry
- 29 between in situ growth of freshwater phytoplankton under static and fluctuating
- 30 light environments: possible implications for dominance. Journal of Plankton
- 31 Research, 25:517–526
- 32 Moisander, P.H., McClinton Iii, E., & Paerl, H.W. 2002. Salinity effects on growth,
- 33 photosynthetic parameters, and nitrogenase activity in estuarine planktonic
- 34 cyanobacteria. Microbial Ecology, 432-442.
- 1 Monismith, S.G., Kimmerer, W., Burau, J.R., Stacey, M.T. 2002. Structure and flow-
- 2 induced variability of the subtidal salinity field in northern San Francisco Bay, J.
- 3 Physical Oceanography, 32(11), 3003–3019. doi:10.1175/1520-0485(2002)032<3003
- 4 Mussen, T.D., Driscoll, S., Cook, M.E., Nordin, J.D., Guerin, M., Rachiele, R., Smith,
- 5 D.J., Berg, G.M., Thompson, L.C. 2023. Investigating factors that contribute to
- 6 phytoplankton biomass declines in the lower Sacramento River. San Francisco
- 7 Estuary and Watershed Science, 21(1) Article 3.
- 8 <u>https://doi.org/10.15447/sfews.2023v21iss1art3</u>
- 9 Nichols, F.H., Cloern, J.E., Luoma, S.N., Peterson, D.H. 1986. The modification of an
- 10 estuary. Science 231(4738):567-573.
- 11 Nixon, S. W. 1995. Coastal marine eutrophication: a definition, social causes, and
- 12 future concerns. Ophelia, 41(1), 199-219.
- 13 Novick E, Holleman R, Jabusch T et al. (2015) Characterizing and quantifying nutrient
- 14 sources, sinks, and transformations in the Delta: synthesis, modeling, and
- 15 recommendations for monitoring. San Francisco (CA): San Francisco Estuary
- 16 Institute. 28 p.
- 17 Osburn F.S., Wagner N.D., Taylor R.B., Chambliss C.K., Brooks B.W., Scott J.T. 2023.
- 18 The effects of salinity and N:P on N-rich toxins by both an N-fixing and non-N-fixing
- 19 cyanobacteria. Limnology and Oceanography Letters, 8(1):162-172. doi:
- 20 10.1002/lol2.10234.
- 21 Otsuka, S., Suda, S., Li, R., Watanabe, M., Oyaizu, H., Matsumoto, S., Watanabe,
- 22 A.M.M. 1999. Characterization of morphospecies and strains of the genus
- 23 *Microcystis* (Cyanobacteria) for a reconsideration of species
- 24 classification. Phycological Research, 47(3), 189-197.
- 25 Otten, T.G., Paerl, H.W., Dreher, T.W., Kimmerer, W.J., Parker, A.E., 2017. The
- 26 molecular ecology of *Microcystis sp.* blooms in the San Francisco Estuary.
- 27 Environmental Microbiology 19, 3619–3637. https://doi.org/10.1111/1462-
- 28 2920.13860
- 29 Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57-58
- 30 Paerl, H. 2008. Nutrient and other environmental controls of harmful
- 31 cyanobacterial blooms along the freshwater–marine continuum. In: Hudnell, H.K.
- 32 (eds) Cyanobacterial Harmful Algal Blooms: State of the Science and Research

- 1 Needs. Advances in Experimental Medicine and Biology, vol 619. Springer, New
- 2 York, NY.
- 3 Paerl, H. W., Otten, T. G., Kudela, R. 2018. Mitigating the expansion of harmful algal
- 4 blooms across the freshwater-to-marine continuum. San Francisco Estuary and
- 5 Watershed Science 20(4):6. DOI: 10.15447/sfews.2023v20iss4art6
- 6 Patiño, R., Christensen, V.G., Graham, J.L., Rogosch, J.S., and Rosen, B.H. 2023. Toxic
- 7 Algae in Inland Waters of the Conterminous United States—A Review and Synthesis.
- 8 Water 15, 2808. doi: 10.3390/w15152808.
- 9 Peacock, M.B., Gibble, C.M., Senn, D.B., Cloern, J.E., Kudela, R.M. 2018. Blurred lines:
- 10 multiple freshwater and marine algal toxins at the land-sea interface of San
- 11 Francisco Bay, California. Harmful Algae. 73:138–147.
- 12 https://doi.org/10.1016/j.hal.2018.02.005
- 13 Perry, S.E., T. Brown, V. Klotz. 2023. Interagency Ecological Program: Phytoplankton
- 14 monitoring in the Sacramento-San Joaquin Bay-Delta, collected by the
- 15 Environmental Monitoring Program, 2008-2022 ver 5. Environmental Data Initiative.
- 16 https://doi.org/10.6073/pasta/70e2e467279543c9637184a6b79d2d8a (Accessed
- 17 2023-08-01).
- 18 Phlips, E.J., Badylak, S., Mathews, A.L., Milbrandt, E.C., Montefiore, L.R., Morrison,
- 19 E.S., Nelson, N. and Stelling, B. 2023. Algal blooms in a river-dominated estuary and
- 20 nearshore region of Florida, USA: the influence of regulated discharges from water
- 21 control structures on hydrologic and nutrient conditions. Hydrobiologia, pp.1-27.
- 22 Preece, E.P., Hardy, F.J., Moore, B.C., Bryan, M. 2017. A review of microcystin
- 23 detections in estuarine and marine waters: environmental implications and human
- 24 health risk. Harmful Algae. 61:31–45. <u>https://doi.org/10.1016/j.hal.2016.11.006</u>
- 25 Preece, E.P., Cooke, J., Plaas, H., Sabo, A., Nelson, L. and Paerl, H.W., 2024. Managing
- 26 a cyanobacteria harmful algae bloom "hotspot" in the Sacramento–San Joaquin
- 27 Delta, California. *Journal of Environmental Management*, *351*, p.119606.
- 28 Qiu, Y., Ma, Z., Liu, X., Zheng, R., Xiao, Y., Wang, M. 2022. The Detrimental Effect of
- High Salinity on the Growth and Microcystins Contamination of *Microcystis*
- 30 *aeruginosa*. Water, 14(18), 2871.
- 31 Rabalais, N.N., Cai, W.-J., Carstensen, J., Conley, D.J., Fry, B., Hu, X., Quiñones-Rivera,
- 32 Z., Rosenberg, R., Slomp, C.P., Turner, R.E., Voss, M., Wissel, B., Zhang, J. 2014.

- 1 Eutrophication-driven deoxygenation in the coastal ocean. Oceanography 27,
- 2 172e183.
- 3 Reynolds, C. S. 2006. The ecology of phytoplankton. Cambridge University Press.
- 4 Richardson, E.T., Bouma-Gregson, K., Kraus, T.E.C., O'Donnell, K., Sturgeon, C.L.,
- 5 Soto Perez, J., Delascagigas, A., Nakatsuka, K.K., Burau, D.J., Gelber, A.D., Von
- 6 Hoyningen Huene, B.L., Jumps, N.I., Bergamaschi, B.A. 2023. Phytoplankton species
- 7 composition and abundance in the Sacramento-San Joaquin River Delta:
- 8 Microscopic enumeration of USGS samples, beginning in 2016: U.S. Geological
- 9 Survey data release, https://doi.org/10.5066/P97ZBPLH.
- 10 Robertson-Bryan, Inc. 2023. Cyanobacteria and nutrient dynamics in the Stockton
- 11 Deep Water Ship Channel.
- 12 Rousso, B.Z., Bertone, E., Stewart, R., Aguiar, A., Chuang, A., Hamilton, D.P., Burford,
- 13 M.A. 2022. Chlorophyll and phycocyanin in-situ fluorescence in mixed
- 14 cyanobacterial species assemblages: Effects of morphology, cell size and growth
- 15 phase. Water Research, Volume 212,
- 16 Saleem F., Jiang J.L., Atrache R., Paschos A., Edge T.A., Schellhorn H.E. 2023.
- 17 Cyanobacterial Algal Bloom Monitoring: Molecular Methods and Technologies for
- 18 Freshwater Ecosystems. Microorganisms, 11(4):851. doi:
- 19 10.3390/microorganisms11040851.
- 20 Saleh D, Domagalski J (2015) SPARROW modeling of nitrogen sources and transport
- 21 in rivers and streams of California and adjacent states, US. J Am Water Resour Assoc
- 22 51:1487-1507.
- 23 Schemel L.E., Sommer T.R., Müller-Solger A.B., Harrell W.C. 2004. Hydrologic
- 24 variability, water chemistry, and phytoplankton biomass in a large floodplain of the
- 25 Sacramento River, CA, USA. Hydrobiologia 513:129–139
- 26 Schindler D.W., Fee E.J., Ruszczynski T. 1978. Phosphorus input and its
- 27 consequences for phytoplankton standing crop in the Experimental Lake Area and
- in similar lakes. Journal of the Fisheries Research Board of Canada 35:190-196.
- 29 Schoellhamer, D.H., Wright, S.A., Drexler J. 2012. A conceptual model of
- 30 sedimentation in the Sacramento-San Joaquin Delta. San Francisco Estuary and
- 31 Watershed Science 10(3). escholarship.org/uc/item/2652z8sq
- 32 Sellner, K.G., Lacouture, R.V., Parrish, C.R., 1988. Effects of increasing salinity on a
- 33 cyanobacteria bloom in the Potomac River estuary. J. Plankton Res. 10 (1), 49–61.

- 1 Smith, J., Sutula, M., Bouma-Gregson, K., Van Dyke, M. 2021. California State Water
- 2 Boards' Framework and Strategy for Freshwater Harmful Algal Bloom Monitoring:
- 3 Full Report with Appendices. SCCWRP Technical Report #1141.B. Southern
- 4 California Coastal Water Research Project. Costa Mesa, CA. http://www.sccwrp.org/
- 5 Spier, C., Stringfellow, W., Hanlong, J., Brunell, M., Estiandan, M., Koski, T., Kääriä.
- 6 2013. Unprecedented bloom of toxin-producing cyanobacteria in the Southern Bay-
- 7 Delta Estuary and its potential negative impact on the aquatic food web. University
- 8 of the Pacific Ecological Engineering Research Program Report 4.5.1. December.
- 9 Sutula, M., Kudela, R., Hagy III, J. D., Harding Jr, L. W., Senn, D., Cloern, J. E., Bricker, S,
- 10 Berg, GM, Beck, M. 2017. Novel analyses of long-term data provide a scientific basis
- 11 for chlorophyll-a thresholds in San Francisco Bay. Estuarine, Coastal and Shelf
- 12 Science, 197, 107-118.
- 13 Tett P., Gilpin L., Svendsen H., Erlandsson, C.P., Larsson, U., Kratzer, S., Fouilland, E.,
- 14 Janzen, C., Lee, j.-Y., Grenz, C., Newton, A., Gomes Ferreira, J., Fernandes, T., Scory, S.
- 15 2003. Eutrophication and some European waters of restricted exchange.
- 16 Continental Shelf Research, 23:1635-1672.
- 17 Ting, C.S., Rocap, G., King, J., Chisholm, S.W. 2002. Cyanobacterial photosynthesis in
- 18 the oceans: the origins and significance of divergent light-harvesting strategies.
- 19 Trends in Microbiology, 10:134-142.
- 20 Tolar, S. M. 2014. Salinity tolerance in cyanobacteria and its implications for
- 21 expansion into estuaries. *Thesis*. University of North Carolina at Chapel Hill. Doi:
- 22 https://doi.org/10.17615/55eg-8053
- 23 Tonk, L., Bosch, K., Visser, P. M., & Huisman, J. 2007. Salt tolerance of the harmful
- 24 cyanobacterium *Microcystis aeruginosa*. Aquatic Microbial Ecology, 46(2), 117-123.
- 25 Vareli, K., Zarali, E., Zacharioudakis, G.S.A., Vagenas, G., Varelis, V., Pilidis, G.,
- 26 Briasoulis, E., Sainis, I. 2012. Microcystin producing cyanobacterial communities in
- 27 Amvrakikos Gulf (Mediterranean Sea, NW Greece) and toxin accumulation in
- 28 mussels (*Mytilus galloprovincialis*). Harmful Algae 15, 109–118.
- 29 https://doi.org/10.1016/j.hal.2011.12.005
- 30 Verspagen, J. M., Snelder, E. O., Visser, P. M., Joehnk, K. D., Ibelings, B. W., Mur, L. R.,
- 31 & Huisman, J. E. F. 2005. Benthic-pelagic coupling in the population dynamics of the
- harmful cyanobacterium Microcystis. Freshwater Biology, 50(5), 854-867.

- 1 Visser, P.M., Ibelings, B.W., Bormans, M., Huisman, J. 2015. Artificial mixing to
- 2 control cyanobacterial blooms: a review. Aquatic Ecology 50: 423-441. DOI
- 3 10.1007/s10452-015-9537-0
- 4 Wagner N.D., Osburn, F.S., Wang, J., Taylor, R.B., Boedecker, A.R., Chambliss, C.K.,
- 5 Brooks, B.W., Scott, J.T. 2019. Biological Stoichiometry Regulates Toxin Production in
- 6 *Microcystis aeruginosa* (UTEX 2385). Toxins 11: 601. doi:10.3390/toxins11100601
- 7 Wagner, N.D., Quach, E., Buscho, S., Ricciardelli, A., Kannan, A., Naung, S.W., Phillip,
- 8 G., Sheppard, B., Ferguson, L., Allen, A. and Sharon, C., 2021. Nitrogen form,
- 9 concentration, and micronutrient availability affect microcystin production in
- 10 cyanobacterial blooms. Harmful Algae, 103, p.102002.
- 11 Wang, J. and Zhang, Z. 2020. Phytoplankton, dissolved oxygen and nutrient patterns
- 12 along a eutrophic river-estuary continuum: Observation and modeling. Journal of
- 13 environmental management, 261, p.110233.
- 14 Wang, W., Sheng, Y. and Jiang, M., 2022. Physiological and metabolic responses of
- 15 Microcystis aeruginosa to a salinity gradient. Environmental Science and Pollution
- 16 Research, pp.1-12.
- 17 Whipple, A.A., Grossinger, R.M., Rankin, D., Stanford, B., Askevold, R. 2012.
- 18 Sacramento-San Joaquin Delta historical ecology investigation: exploring pattern
- 19 and process. Richmond: San Francisco Estuary Institute-Aquatic Science Center.
- 20 Wu, Z., Shi, J., Li, R. 2009. Comparative studies on photosynthesis and phosphate
- 21 metabolism of *Cylindrospermospsis raciborskii* with *Microcystis aeruginosa* and
- 22 Aphanizomenon flos-aquae 2009. Harmful Algae 8:910-915
- 23 Wynne, T., Meredith, A., Stumpf, R., Briggs, T., Litaker, W. 2020. Harmful Algal Bloom
- 24 Forecasting Branch Ocean Color Satellite Imagery Processing Guidelines, 2020
- 25 Update. doi: 10.25923/606t-m243.
- 26 Zhang, Y., Xu, Q., Xi, B. 2013. Effect of NaCl salinity on the growth, metabolites, and
- 27 antioxidant system of *Microcystis aeruginosa*. Journal of Freshwater Ecology, 28(4),
- 28 477-487.